Physics-Informed Neural Networks and their Implementation in MATLAB

MATLAB语言 人工神经网络 计算机科学 偏微分方程 人工智能 工具箱 算法 数学优化 数学 数学分析 操作系统 程序设计语言
作者
Mohie M. Alqezweeni,Vladimir Gorbachenko,Zoya A. Karmanova
标识
DOI:10.1109/iccitm56309.2022.10031685
摘要

An analysis was made of physics-informed neural networks used to solve partial differential equations. The prospects for the implementation of physics-informed neural networks in the MATLAB system are shown. An algorithm for solving partial differential equations in MATLAB using physics-informed neural networks has been developed. On the example of a model problem described by the Poisson equation, physics-informed neural networks were implemented and studied, which showed that MATLAB can be successfully used to implement such networks. MATLAB made it possible to solve the Poisson equation up to the mean square value of the loss function equal to 0.01. The best results were obtained by networks with a small number of layers (3–4) and a sufficiently large number of neurons in each layer (50–100). Comparison with known results showed that MATLAB was inferior to TensorFlow in terms of learning speed. The application of the Optimization Toolbox MATLAB for the implementation of the L-BFGS quasi-Newtonian learning algorithm for physics-informed neural networks was studied. The quasi-Newtonian algorithm makes it possible to increase the accuracy of solving the problem, but requires a lot of training time. As further research, it is recommended to expand the capabilities of the Deep Learning Toolbox by including quasi-Newtonian learning algorithms, in particular, the Levenberg-Marquard algorithm, and new neural network architectures, for example, networks of radial basis functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助简单采纳,获得10
3秒前
古工楼完成签到,获得积分10
3秒前
aurora完成签到 ,获得积分10
3秒前
和谐的映梦完成签到,获得积分10
3秒前
4秒前
hansa完成签到,获得积分0
8秒前
她的城完成签到,获得积分0
8秒前
10秒前
QSJ完成签到,获得积分10
13秒前
LAN完成签到,获得积分10
14秒前
Jeremy637完成签到 ,获得积分10
17秒前
赵田完成签到 ,获得积分10
19秒前
吹泡泡的红豆完成签到 ,获得积分10
21秒前
22秒前
1111发布了新的文献求助10
23秒前
C_Li完成签到,获得积分10
26秒前
南城雨落完成签到,获得积分10
28秒前
枯叶蝶发布了新的文献求助10
28秒前
鸣鸣完成签到,获得积分10
31秒前
jameslee04完成签到 ,获得积分10
32秒前
lani完成签到 ,获得积分10
32秒前
小事完成签到 ,获得积分10
33秒前
科研小白完成签到,获得积分10
34秒前
经纲完成签到 ,获得积分0
35秒前
陈皮完成签到 ,获得积分10
35秒前
懒猫完成签到,获得积分10
36秒前
Cyrus完成签到,获得积分10
37秒前
疯狂的绝山完成签到 ,获得积分10
39秒前
cugwzr完成签到,获得积分10
39秒前
pangzh完成签到,获得积分10
41秒前
yiryir完成签到 ,获得积分10
42秒前
帆帆帆完成签到 ,获得积分10
45秒前
皮皮完成签到 ,获得积分10
45秒前
bzdjsmw完成签到 ,获得积分10
48秒前
50秒前
lapin完成签到,获得积分10
52秒前
Akim应助科研通管家采纳,获得10
52秒前
隐形曼青应助科研通管家采纳,获得10
52秒前
cdercder应助科研通管家采纳,获得10
52秒前
夏来应助科研通管家采纳,获得10
52秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402490
捐赠科研通 3077249
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743