Assessment of sputtering damage in organic layer surface based on energy distribution of positively charged particles formed during facing-target sputtering of indium–tin oxide

溅射 X射线光电子能谱 氧化铟锡 材料科学 图层(电子) 氧化物 沉积(地质) 分析化学(期刊) 薄膜 化学工程 化学 光电子学 复合材料 纳米技术 冶金 有机化学 古生物学 沉积物 工程类 生物
作者
Kouji Suemori
出处
期刊:Organic Electronics [Elsevier]
卷期号:116: 106764-106764
标识
DOI:10.1016/j.orgel.2023.106764
摘要

During sputtering formation of transparent conductive oxide (TCO) electrodes, the organic layer surface becomes damaged, limiting transparent organic device performance. Bombardment of the organic underlayer surface with high-energy particles formed during the sputtering process is considered a major source of sputtering damage. In this study, we investigated the energy distribution of positively charged high-energy particles formed during deposition of indium–tin oxide (ITO) by facing-target sputtering (FTS), which is a low-damage sputtering process designed for fabricating TCO on an organic layer. Positively charged particles with mass numbers of 16, 20, 32, 40, and 115 were attributed to O+ or O22+, Ar2+, O2+, Ar+, and In+, respectively. Most of these particles carried kinetic energies below 2 eV, significantly smaller than the energies of most chemical bonds in the organic molecules. Changing the O2 content in the sputtering gas varied the number of positively charged particles without degrading the current–voltage characteristics of the organic devices. Furthermore, X-ray photoelectron spectroscopy measurements revealed that when ITO was deposited on tris(8-hydroxyquinoline) aluminum (Alq)—a typical organic semiconducting molecule—the surface molecules of the Alq underlayer remained intact. These findings suggest that in ITO deposition by FTS, damage is not caused by breakdown of the organic molecules, the widely accepted cause of sputtering damage. However, our ouganic devices showed significantly deterioration of the current-voltage characteristics caused by the sputtering damage. We report that the damage was likely caused by crack formation at the ITO/organic-underlayer interface resulting from internal stress of the ITO layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷权威完成签到,获得积分20
刚刚
SOLOMON应助ww_采纳,获得10
1秒前
tantan发布了新的文献求助10
1秒前
哎哟很烦完成签到,获得积分10
1秒前
ZHUJ1E完成签到,获得积分10
1秒前
许十五完成签到,获得积分10
2秒前
2秒前
打打应助xiaokezhang采纳,获得10
2秒前
HGalong应助guo采纳,获得10
3秒前
4秒前
孙文远完成签到,获得积分10
4秒前
SciGPT应助肾宝采纳,获得10
4秒前
6秒前
Akim应助Dorisyoolee采纳,获得10
7秒前
小镇青年完成签到,获得积分10
7秒前
OG应助Leon采纳,获得10
7秒前
LabRat完成签到 ,获得积分10
7秒前
ycool发布了新的文献求助10
7秒前
我爱科研完成签到,获得积分10
8秒前
9秒前
鲤鱼一一发布了新的文献求助10
10秒前
yzf完成签到,获得积分10
10秒前
Gin完成签到,获得积分10
10秒前
WSH完成签到,获得积分10
11秒前
11秒前
Dorisyoolee完成签到,获得积分10
12秒前
han完成签到 ,获得积分10
13秒前
L_x完成签到 ,获得积分10
13秒前
14秒前
寻寻觅觅呢应助林晓筱采纳,获得20
14秒前
15秒前
六一儿童节完成签到 ,获得积分10
15秒前
17秒前
史一手完成签到,获得积分10
18秒前
JamesPei应助多糖采纳,获得10
18秒前
啦啦啦发布了新的文献求助10
18秒前
18秒前
18秒前
肾宝完成签到,获得积分10
19秒前
祝小鱼发布了新的文献求助10
19秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Mechanical Methods of the Activation of Chemical Processes 510
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2419915
求助须知:如何正确求助?哪些是违规求助? 2110409
关于积分的说明 5339742
捐赠科研通 1837737
什么是DOI,文献DOI怎么找? 915065
版权声明 561134
科研通“疑难数据库(出版商)”最低求助积分说明 489324