亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Based on Computed Tomography Pulmonary Angiography in Evaluating Pulmonary Artery Pressure in Patients with Pulmonary Hypertension

医学 肺动脉 肺动脉高压 肺动脉造影 计算机断层摄影术 放射科 血压 计算机断层血管造影 血管造影 心脏病学 内科学
作者
Nan Zhang,Xin Zhao,Jie Li,Liqun Huang,Haotian Li,Haiyu Feng,Marcos Antônio Garcia,Yunshan Cao,Zhonghua Sun,Senchun Chai
出处
期刊:Journal of Clinical Medicine [Multidisciplinary Digital Publishing Institute]
卷期号:12 (4): 1297-1297 被引量:8
标识
DOI:10.3390/jcm12041297
摘要

Right heart catheterization is the gold standard for evaluating hemodynamic parameters of pulmonary circulation, especially pulmonary artery pressure (PAP) for diagnosis of pulmonary hypertension (PH). However, the invasive and costly nature of RHC limits its widespread application in daily practice. To develop a fully automatic framework for PAP assessment via machine learning based on computed tomography pulmonary angiography (CTPA). A machine learning model was developed to automatically extract morphological features of pulmonary artery and the heart on CTPA cases collected between June 2017 and July 2021 based on a single center experience. Patients with PH received CTPA and RHC examinations within 1 week. The eight substructures of pulmonary artery and heart were automatically segmented through our proposed segmentation framework. Eighty percent of patients were used for the training data set and twenty percent for the independent testing data set. PAP parameters, including mPAP, sPAP, dPAP, and TPR, were defined as ground-truth. A regression model was built to predict PAP parameters and a classification model to separate patients through mPAP and sPAP with cut-off values of 40 mm Hg and 55 mm Hg in PH patients, respectively. The performances of the regression model and the classification model were evaluated by analyzing the intraclass correlation coefficient (ICC) and the area under the receiver operating characteristic curve (AUC). Study participants included 55 patients with PH (men 13; age 47.75 ± 14.87 years). The average dice score for segmentation increased from 87.3% ± 2.9 to 88.2% ± 2.9 through proposed segmentation framework. After features extraction, some of the AI automatic extractions (AAd, RVd, LAd, and RPAd) achieved good consistency with the manual measurements. The differences between them were not statistically significant (t = 1.222, p = 0.227; t = -0.347, p = 0.730; t = 0.484, p = 0.630; t = -0.320, p = 0.750, respectively). The Spearman test was used to find key features which are highly correlated with PAP parameters. Correlations between pulmonary artery pressure and CTPA features show a high correlation between mPAP and LAd, LVd, LAa (r = 0.333, p = 0.012; r = -0.400, p = 0.002; r = -0.208, p = 0.123; r = -0.470, p = 0.000; respectively). The ICC between the output of the regression model and the ground-truth from RHC of mPAP, sPAP, and dPAP were 0.934, 0.903, and 0.981, respectively. The AUC of the receiver operating characteristic curve of the classification model of mPAP and sPAP were 0.911 and 0.833. The proposed machine learning framework on CTPA enables accurate segmentation of pulmonary artery and heart and automatic assessment of the PAP parameters and has the ability to accurately distinguish different PH patients with mPAP and sPAP. Results of this study may provide additional risk stratification indicators in the future with non-invasive CTPA data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵发布了新的文献求助10
刚刚
15秒前
Ji发布了新的文献求助10
21秒前
Ji完成签到,获得积分10
34秒前
45秒前
49秒前
失眠思远发布了新的文献求助10
56秒前
CodeCraft应助儒雅老太采纳,获得10
57秒前
华仔应助甜甜亦丝采纳,获得10
1分钟前
1分钟前
今后应助曼曼采纳,获得10
1分钟前
甜甜亦丝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
曼曼发布了新的文献求助10
1分钟前
曼曼完成签到,获得积分10
1分钟前
FWCY发布了新的文献求助10
2分钟前
赘婿应助小婷君采纳,获得10
2分钟前
2分钟前
小婷君完成签到,获得积分10
2分钟前
小婷君发布了新的文献求助10
2分钟前
2分钟前
mir为少发布了新的文献求助10
2分钟前
mir为少完成签到,获得积分20
2分钟前
香蕉觅云应助喵喵采纳,获得10
2分钟前
华仔应助mir为少采纳,获得10
2分钟前
3分钟前
3分钟前
儒雅老太发布了新的文献求助10
3分钟前
喵喵发布了新的文献求助10
3分钟前
尊敬的小凡完成签到,获得积分10
3分钟前
熬夜猝死的我完成签到,获得积分10
3分钟前
FashionBoy应助喵喵采纳,获得10
4分钟前
4分钟前
喵喵发布了新的文献求助10
4分钟前
4分钟前
5分钟前
深情安青应助喵喵采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078540
求助须知:如何正确求助?哪些是违规求助? 4297273
关于积分的说明 13388009
捐赠科研通 4120046
什么是DOI,文献DOI怎么找? 2256401
邀请新用户注册赠送积分活动 1260687
关于科研通互助平台的介绍 1194374