Optimal allocation method of multi-energy system based on hybrid optimization algorithm

粒子群优化 计算机科学 数学优化 多群优化 帝国主义竞争算法 最优化问题 计算 可再生能源 元优化 能量(信号处理) 算法 工程类 数学 统计 电气工程
作者
Ji Li,Wei Xu,Xiaomei Feng,Biao Qiao,Lü Xing,Chao Liu,Huiyu Xue
出处
期刊:Energy Reports [Elsevier BV]
卷期号:9: 1415-1423 被引量:1
标识
DOI:10.1016/j.egyr.2023.04.244
摘要

With the rapid development of industry, the research of energy storage technology and renewable energy continues to be hot, and the energy industry opens the era of diversification. Multi-energy complementary has become a new trend in sustainable energy development, leading the energy industry to a new energy system of deep integration and integration of multiple energy sources. This paper proposes a hybrid optimization algorithm that combines particle swarm algorithms and Hooke–Jeeves​ (HJ) with a comprehensive evaluation index as the optimization objective, aiming to improve the speed of solving the capacity optimization of integrated energy systems. The multi-energy system configuration optimization platform that covers the index system, optimization model, and system analysis module was established to systematically solve the integrated energy system optimization configuration problem, moreover provide an important reference for integrated energy system design and implementation. Besides, the influence of optimization algorithms on the configuration results was analyzed. Taking the combination of soil source heat pump system and combined cooling, heating and power system as an example, this study quantifies and compares the optimization results and solution speeds of the hybrid algorithm and the traditional single optimization calculation. It is shown that the hybrid optimization algorithm reduces the amount of iteration steps by approximately 31% compared with the particle swarm algorithm and by approximately 48% compared with the HJ algorithm. This significantly improves the speed of the optimization computation while ensuring the accuracy of the computation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
个性鲂完成签到,获得积分20
1秒前
诚心文博发布了新的文献求助10
2秒前
3秒前
3秒前
一程山路发布了新的文献求助10
3秒前
鹤川发布了新的文献求助10
3秒前
4秒前
合适诗蕾发布了新的文献求助10
4秒前
香蕉连虎完成签到,获得积分10
4秒前
哦哦完成签到,获得积分10
6秒前
茜茜完成签到,获得积分10
7秒前
WFQ完成签到,获得积分20
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
个性鲂发布了新的文献求助10
7秒前
阿水应助科研通管家采纳,获得10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
阿水应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
打打应助科研通管家采纳,获得10
7秒前
ED应助科研通管家采纳,获得10
7秒前
7秒前
李健应助科研通管家采纳,获得10
7秒前
哈基米德应助科研通管家采纳,获得20
7秒前
8秒前
彭于彦祖应助科研通管家采纳,获得100
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
麦迪发布了新的文献求助10
8秒前
叶子的叶完成签到,获得积分10
8秒前
lumi完成签到,获得积分10
9秒前
念梦完成签到,获得积分10
9秒前
hyc完成签到,获得积分20
9秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Scents of China: A Modern History of Smell 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133401
求助须知:如何正确求助?哪些是违规求助? 3670375
关于积分的说明 11606146
捐赠科研通 3366772
什么是DOI,文献DOI怎么找? 1849725
邀请新用户注册赠送积分活动 913272
科研通“疑难数据库(出版商)”最低求助积分说明 828523