In silico prediction of hERG blockers using machine learning and deep learning approaches

赫尔格 人工智能 生物信息学 随机森林 机器学习 计算机科学 支持向量机 计算生物学 模式识别(心理学) 化学 生物 钾通道 基因 生物化学 生物物理学
作者
Yuanting Chen,Xinxin Yu,Weihua Li,Yun Tang,Guixia Liu
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:43 (10): 1462-1475 被引量:18
标识
DOI:10.1002/jat.4477
摘要

The human ether-à-go-go-related gene (hERG) is associated with drug cardiotoxicity. If the hERG channel is blocked, it will lead to prolonged QT interval and cause sudden death in severe cases. Therefore, it is important to evaluate the hERG-blocking property of compounds in early drug discovery. In this study, a dataset containing 4556 compounds with IC50 values determined by patch clamp techniques on mammalian lineage cells was collected, and hERG blockers and non-blockers were distinguished according to three single thresholds and two binary thresholds. Four machine learning (ML) algorithms combining four molecular fingerprints and molecular descriptors as well as graph convolutional neural networks (GCNs) were used to construct a series of binary classification models. The results showed that the best models varied for different thresholds. The ML models implemented by support vector machine and random forest performed well based on Morgan fingerprints and molecular descriptors, with AUCs ranging from 0.884 to 0.950. GCN showed superior prediction performance with AUCs above 0.952, which might be related to its direct extraction of molecular features from the original input. Meanwhile, the classification of binary threshold was better than that of single threshold, which could provide us with a more accurate prediction of hERG blockers. At last, the applicability domain for the model was defined, and seven structural alerts that might generate hERG blockage were identified by information gain and substructure frequency analysis. Our work would be beneficial for identifying hERG blockers in chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗里关注了科研通微信公众号
1秒前
1秒前
2秒前
adong完成签到,获得积分10
2秒前
xyjf15发布了新的文献求助200
2秒前
seedcode完成签到,获得积分10
3秒前
传奇3应助研友采纳,获得10
3秒前
小白完成签到 ,获得积分10
4秒前
宇宙超级无敌小毛驴关注了科研通微信公众号
4秒前
猪猪hero发布了新的文献求助10
5秒前
学术菜鸡发布了新的文献求助10
5秒前
6秒前
8秒前
独特凡松发布了新的文献求助10
9秒前
思源应助micpeach采纳,获得10
9秒前
能干妙竹完成签到,获得积分10
11秒前
Doraemon完成签到,获得积分10
11秒前
卡片完成签到,获得积分10
11秒前
满意尔芙发布了新的文献求助10
12秒前
研友_VZG7GZ应助Yacon采纳,获得10
15秒前
Rainy给Rainy的求助进行了留言
16秒前
科研通AI5应助wpxyy采纳,获得10
17秒前
17秒前
afree完成签到,获得积分10
17秒前
小蘑菇应助浮云寄川采纳,获得10
17秒前
17秒前
20秒前
20秒前
卡片发布了新的文献求助10
21秒前
Mars完成签到,获得积分20
21秒前
21秒前
lz完成签到 ,获得积分10
22秒前
spenley发布了新的文献求助10
23秒前
研友发布了新的文献求助10
23秒前
lxh完成签到,获得积分10
24秒前
栗里发布了新的文献求助30
24秒前
25秒前
25秒前
小白发布了新的文献求助10
26秒前
浮云寄川完成签到,获得积分20
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803522
求助须知:如何正确求助?哪些是违规求助? 3348433
关于积分的说明 10338484
捐赠科研通 3064478
什么是DOI,文献DOI怎么找? 1682612
邀请新用户注册赠送积分活动 808364
科研通“疑难数据库(出版商)”最低求助积分说明 764038