Heterogeneous Feature Selection Based on Neighborhood Combination Entropy

范畴变量 特征选择 可解释性 维数之咒 计算机科学 熵(时间箭头) 人工智能 数据挖掘 机器学习 特征(语言学) 模式识别(心理学) 语言学 量子力学 物理 哲学
作者
Pengfei Zhang,Tianrui Li,Zhong Yuan,Chuan Luo,Keyu Liu,Xiaoling Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (3): 3514-3527 被引量:67
标识
DOI:10.1109/tnnls.2022.3193929
摘要

Feature selection aims to remove irrelevant or redundant features and thereby remain relevant or informative features so that it is often preferred for alleviating the dimensionality curse, enhancing learning performance, providing better readability and interpretability, and so on. Data that contain numerical and categorical representations are called heterogeneous data, and they exist widely in many real-world applications. Neighborhood rough set (NRS) can effectively deal with heterogeneous data by using neighborhood binary relation, which has been successfully applied to heterogeneous feature selection. In this article, the NRS model as a unified framework is used to design a feature selection method to handle categorical, numerical, and heterogeneous data. First, the concept of neighborhood combination entropy (NCE) is presented. It can reflect the probability of pairs of the neighborhood granules that are probably distinguishable from each other. Then, the conditional neighborhood combination entropy (cNCE) based on NCE is proposed under the condition of considering decision attributes. Moreover, some properties and relationships between cNCE and NCE are derived. Finally, the functions of inner and outer significances are constructed to design a feature selection algorithm based on cNCE (FScNCE). The experimental results show the effectiveness and superiority of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andy完成签到,获得积分10
2秒前
圣甲虫完成签到 ,获得积分10
2秒前
可可完成签到,获得积分10
2秒前
Apr9810h完成签到 ,获得积分10
3秒前
Eason Liu完成签到,获得积分0
3秒前
林林林完成签到,获得积分10
4秒前
Sodagreen2023完成签到,获得积分10
5秒前
冷静的尔冬完成签到 ,获得积分10
5秒前
bio-tang完成签到,获得积分10
5秒前
hhh发布了新的文献求助10
6秒前
YY完成签到,获得积分10
6秒前
AJTY完成签到,获得积分10
6秒前
文艺乐蕊完成签到,获得积分10
6秒前
暮夕梧桐完成签到,获得积分10
6秒前
阔达的元柏完成签到,获得积分20
7秒前
开心的谷兰完成签到,获得积分10
7秒前
大伟完成签到,获得积分10
7秒前
自然访彤完成签到,获得积分10
7秒前
火星上的百川完成签到,获得积分10
7秒前
Sept完成签到,获得积分10
8秒前
项听蓉完成签到,获得积分10
8秒前
曾泳钧完成签到,获得积分10
9秒前
Lvy完成签到,获得积分10
10秒前
candy teen完成签到,获得积分10
10秒前
llll完成签到,获得积分10
10秒前
hanhan完成签到,获得积分10
10秒前
aqiu发布了新的文献求助30
11秒前
always完成签到 ,获得积分10
11秒前
森林木完成签到,获得积分10
12秒前
nene完成签到,获得积分20
12秒前
新野完成签到,获得积分10
12秒前
ZhouYW应助阔达的元柏采纳,获得10
12秒前
勤劳的音响完成签到,获得积分10
12秒前
RYAN完成签到 ,获得积分10
12秒前
天马行空完成签到,获得积分10
13秒前
云中完成签到,获得积分10
14秒前
植保匠人完成签到,获得积分10
14秒前
赵怼怼完成签到,获得积分10
15秒前
萱萱完成签到,获得积分10
15秒前
含蓄听南完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792657
求助须知:如何正确求助?哪些是违规求助? 3336933
关于积分的说明 10282705
捐赠科研通 3053810
什么是DOI,文献DOI怎么找? 1675707
邀请新用户注册赠送积分活动 803730
科研通“疑难数据库(出版商)”最低求助积分说明 761510