Learning deep feature correspondence for unsupervised anomaly detection and segmentation

人工智能 异常检测 模式识别(心理学) 分割 特征(语言学) 稳健性(进化) 水准点(测量) 计算机科学 特征提取 特征学习 背景(考古学) 无监督学习 深度学习 哲学 古生物学 基因 生物 化学 生物化学 地理 语言学 大地测量学
作者
Jie Yang,Yong Shi,Zhiquan Qi
出处
期刊:Pattern Recognition [Elsevier]
卷期号:132: 108874-108874 被引量:39
标识
DOI:10.1016/j.patcog.2022.108874
摘要

• A learnable deep feature correspondence (DFC) method is proposed for unsupervised anomaly detection and segmentation. • DFC achieves state of the art results on the benchmark unsupervised anomaly detection and segmentation task MVTec AD. • DFC is very effective for detecting and segmenting the anomalous structures and patterns that appear in confined local regions of images, especially the industrial anomalies. • The generality of DFC is demonstrated by applying it on a real industrial inspection scene. Developing machine learning models that can detect and localize the unexpected or anomalous structures within images is very important for numerous computer vision tasks, such as the defect inspection of manufactured products. However, it is challenging especially when there are few or even no anomalous image samples available. In this paper, we propose an unsupervised mechanism, i.e. deep feature correspondence (DFC), which can be effectively leveraged to detect and segment out the anomalies in images solely with the prior knowledge from anomaly-free samples. We develop our DFC in an asymmetric dual network framework that consists of a generic feature extraction network and an elaborated feature estimation network, and detect the possible anomalies within images by modeling and evaluating the associated deep feature correspondence between the two dual network branches. Furthermore, to improve the robustness of the DFC and further boost the detection performance, we specifically propose a self-feature enhancement (SFE) strategy and a multi-context residual learning (MCRL) network module. Extensive experiments have been carried out to validate the effectiveness of our DFC and the proposed SFE and MCRL. Our approach is very effective for detecting and segmenting the anomalies that appear in confined local regions of images, especially the industrial anomalies. It advances the state-of-the-art performances on the benchmark dataset – MVTec AD. Besides, when applied to a real industrial inspection scene, it outperforms the comparatives by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sissi发布了新的文献求助10
刚刚
VDC应助积极的无色采纳,获得30
1秒前
小张完成签到,获得积分10
1秒前
渣渣发布了新的文献求助10
2秒前
5秒前
天天快乐应助jdjf采纳,获得10
5秒前
果茶去冰完成签到 ,获得积分10
5秒前
勤奋橘子完成签到,获得积分10
6秒前
8秒前
8秒前
10秒前
xuxuxu发布了新的文献求助10
11秒前
NexusExplorer应助xxxy采纳,获得30
11秒前
11秒前
12秒前
12秒前
坦率灵槐发布了新的文献求助10
12秒前
123完成签到,获得积分20
13秒前
14秒前
科研通AI6应助向阳采纳,获得10
14秒前
Orange应助WangYe采纳,获得10
14秒前
炼丹师L发布了新的文献求助10
16秒前
16秒前
17秒前
123发布了新的文献求助10
17秒前
鱼鱼色完成签到 ,获得积分10
17秒前
FashionBoy应助小小叶采纳,获得10
18秒前
共享精神应助加加林采纳,获得10
18秒前
cangmingzi发布了新的文献求助10
20秒前
ccc完成签到 ,获得积分10
21秒前
道松先生发布了新的文献求助10
21秒前
21秒前
科研通AI6应助小王采纳,获得30
22秒前
23秒前
iL发布了新的文献求助10
23秒前
azou发布了新的文献求助10
24秒前
ZMF完成签到,获得积分20
26秒前
Lucas应助lily采纳,获得10
28秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458149
求助须知:如何正确求助?哪些是违规求助? 4564260
关于积分的说明 14294271
捐赠科研通 4489098
什么是DOI,文献DOI怎么找? 2458842
邀请新用户注册赠送积分活动 1448759
关于科研通互助平台的介绍 1424403