Multi-lesion radiomics of PET/CT for non-invasive survival stratification and histologic tumor risk profiling in patients with lung adenocarcinoma

医学 危险系数 神经组阅片室 正电子发射断层摄影术 放射科 置信区间 接收机工作特性 无线电技术 腺癌 介入放射学 核医学 分级(工程) PET-CT 内科学 癌症 工程类 土木工程 精神科 神经学
作者
Meixin Zhao,Kilian Kluge,László Papp,Marko Grahovac,Shaomin Yang,Chunting Jiang,Denis Krajnc,Clemens P. Spielvogel,Boglarka Ecsedi,Alexander Haug,Shiwei Wang,Marcus Hacker,Weifang Zhang,Xiang Li
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (10): 7056-7067 被引量:17
标识
DOI:10.1007/s00330-022-08999-7
摘要

ObjectivesThis study investigates the ability of machine learning (ML) models trained on clinical data and 2-deoxy-2-[18F]fluoro-D-glucose(FDG) positron emission tomography/computed tomography (PET/CT) radiomics to predict overall survival (OS), tumor grade (TG), and histologic growth pattern risk (GPR) in lung adenocarcinoma (LUAD) patients.Methods:A total of 421 treatment-naive patients with histologically-proven LUAD and available FDG PET/CT imaging were retrospectively included. Four cohorts were assessed for predicting 4-year OS (n = 276), 3-year OS (n = 280), TG (n = 298), and GPR (n = 265). FDG-avid lesions were delineated, and 2082 radiomics features were extracted and combined with endpoint-specific clinical parameters. ML models were built for the prediction of 4-year OS (M4OS), 3-year OS (M3OS), tumor grading (MTG), and histologic growth pattern risk (MGPR). A 100-fold Monte Carlo cross-validation with 80:20 training to validation split was employed as a performance evaluation for all models. The association between the M4OS and M3OS predictions with OS was assessed by the Kaplan-Meier survival analysis.ResultsThe area under the receiver operator characteristics curve (AUC) was the highest for M4OS (AUC 0.88, 95% confidence interval (CI) 86.7–88.7), followed by M3OS (AUC 0.84, CI 82.9–84.9), while MTG and MGPR performed equally well (AUC 0.76, CI 74.4–77.9, CI 74.6–78, respectively). Predictions of M4OS (hazard ratio (HR) −2.4, CI −2.47 to −1.64, p < 0.05) and M3OS (HR −2.36, CI −2.79 to −1.93, p < 0.05) were independently associated with OS.ConclusionML models are able to predict long-term survival outcomes in LUAD patients with high accuracy. Furthermore, histologic grade and predominant growth pattern risk can be predicted with satisfactory accuracy.Key Points • Machine learning models trained on pre-therapeutic PET/CT radiomics enable highly accurate long-term survival prediction of patients with lung adenocarcinoma. • Highly accurate survival predictions are achieved in lung adenocarcinoma patients despite heterogenous histologies and treatment regimens. • Radiomic machine learning models are able to predict lung adenocarcinoma tumor grade and histologic growth pattern risk with satisfactory accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性静祝完成签到 ,获得积分10
1秒前
2秒前
哭泣的映寒完成签到 ,获得积分10
4秒前
6秒前
Dylan完成签到 ,获得积分10
6秒前
6秒前
7秒前
Jm完成签到,获得积分10
11秒前
cc发布了新的文献求助10
12秒前
曾经冰露发布了新的文献求助10
12秒前
12秒前
风趣的黑夜完成签到,获得积分20
13秒前
aaafa完成签到,获得积分10
15秒前
CC发布了新的文献求助50
15秒前
17秒前
方不居完成签到,获得积分10
18秒前
Hangerli发布了新的文献求助20
19秒前
20秒前
鱼儿水中游关注了科研通微信公众号
22秒前
22秒前
24秒前
Jm发布了新的文献求助10
24秒前
文章多多发布了新的文献求助10
28秒前
33秒前
34秒前
希望天下0贩的0应助BioRick采纳,获得10
34秒前
37秒前
JC发布了新的文献求助10
38秒前
38秒前
wanci应助机器猫采纳,获得10
38秒前
Jasper应助wisher采纳,获得10
39秒前
欢呼的煎蛋完成签到,获得积分10
39秒前
Humphrey发布了新的文献求助10
40秒前
40秒前
40秒前
41秒前
43秒前
44秒前
狂野的f发布了新的文献求助50
44秒前
tennisgirl发布了新的文献求助10
45秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Primate Cognition: Volume 1: Social Cognition (2nd edn) 400
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916376
求助须知:如何正确求助?哪些是违规求助? 3461854
关于积分的说明 10919326
捐赠科研通 3188659
什么是DOI,文献DOI怎么找? 1762741
邀请新用户注册赠送积分活动 853142
科研通“疑难数据库(出版商)”最低求助积分说明 793716