A novel automated depression detection technique using text transcript

计算机科学 模式 萧条(经济学) 召回 苦恼 人工智能 模态(人机交互) 繁荣 自然语言处理 机器学习 心理学 认知心理学 临床心理学 社会科学 社会学 政治学 法学 经济 宏观经济学
作者
Uma Yadav,Ashish K. Sharma
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:33 (1): 108-122 被引量:23
标识
DOI:10.1002/ima.22793
摘要

Abstract Depression is one of the most common mental illnesses, impacting billions of people worldwide. The lack of existing resources is impeding the country's economic prosperity. As a result, new approaches for detecting and treating mental diseases as well as reaching out to individuals are required so that people can overcome their daily challenges and become more productive. An automated depression detection system can greatly aid in clinical findings and early treatment of depression. Automatic detection, like in a clinical interview can be derived from various modalities that include video, audio, and text. Among these modalities, audio characteristics are the most commonly researched while text elements are seldom investigated. In the light of the above, this paper proposes a novel automated depression identification approach based on linguistic material gathered from patient interviews. The focus is to enhance both the accuracy and efficiency of detection. The proposed approach is made up of two parts: a Bidirectional Gated Recurrent Unit (BGRU) network for dealing with linguistic information and a fully coupled network that integrates the model outputs to measure the depressed state. The proposed approach is validated using Distress Analysis Interview Corpus‐Wizard‐of‐Oz interviews dataset. To evaluate the performance precision, recall, and F1 score are computed using the proposed approach and then the comparative analysis is done with the existing approaches. The proposed approach yielded an F1 score of 0.92, indicating the existence of depression as well as the projected severity level. It is realized from the generated results that the proposed approach has outperformed the previous ones. The proposed approach can not only automatically assess the severity of depression but also enhances both the accuracy and efficiency of detection. The proposed approach indicates the feasibility of BGRU over Long Short Term Memory by achieving exceptional results for recognition of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大卫戴完成签到 ,获得积分10
1秒前
失眠的汽车完成签到,获得积分10
1秒前
海心完成签到,获得积分10
1秒前
一台小钢炮完成签到,获得积分10
1秒前
所所应助xs6661采纳,获得10
2秒前
2秒前
慕青应助kong采纳,获得10
2秒前
王东旭完成签到,获得积分10
3秒前
Zx_1993应助团团是只猫采纳,获得10
3秒前
4秒前
asbefore发布了新的文献求助10
4秒前
ZSHAN发布了新的文献求助10
4秒前
Akim应助mimi采纳,获得30
4秒前
Leo关闭了Leo文献求助
4秒前
活泼红牛完成签到,获得积分10
4秒前
刘超D发布了新的文献求助10
4秒前
Shark完成签到,获得积分10
5秒前
JOKY完成签到 ,获得积分10
5秒前
兰是一个信仰完成签到,获得积分10
5秒前
yon完成签到,获得积分20
6秒前
6秒前
谢晋完成签到,获得积分10
7秒前
徐佳达完成签到,获得积分10
7秒前
梁xxxxx完成签到,获得积分10
7秒前
ai幸发布了新的文献求助10
7秒前
7秒前
风趣的洙完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助20
8秒前
8秒前
更好的我完成签到,获得积分10
8秒前
zzzzzzzp完成签到,获得积分10
9秒前
changping完成签到,获得积分0
9秒前
orixero应助李心雨采纳,获得10
9秒前
斯文败类应助yon采纳,获得10
9秒前
9秒前
10秒前
科研通AI5应助无奈狗采纳,获得10
10秒前
liuhz完成签到,获得积分10
11秒前
呆呆是一条鱼完成签到,获得积分10
11秒前
Zx_1993应助o我不是高手采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4985096
求助须知:如何正确求助?哪些是违规求助? 4235679
关于积分的说明 13191138
捐赠科研通 4028708
什么是DOI,文献DOI怎么找? 2203884
邀请新用户注册赠送积分活动 1216016
关于科研通互助平台的介绍 1133640