Deep learning spatial phase unwrapping: a comparative review

深度学习 人工智能 计算机科学 人工神经网络 一般化 背景(考古学) 机器学习 模式识别(心理学) 数学 生物 数学分析 古生物学
作者
Kaiqiang Wang,Qian Kemao,Jianglei Di,Jianlin Zhao
标识
DOI:10.1117/1.apn.1.1.014001
摘要

Phase unwrapping is an indispensable step for many optical imaging and metrology techniques. The rapid development of deep learning has brought ideas to phase unwrapping. In the past four years, various phase dataset generation methods and deep-learning-involved spatial phase unwrapping methods have emerged quickly. However, these methods were proposed and analyzed individually, using different strategies, neural networks, and datasets, and applied to different scenarios. It is thus necessary to do a detailed comparison of these deep-learning-involved methods and the traditional methods in the same context. We first divide the phase dataset generation methods into random matrix enlargement, Gauss matrix superposition, and Zernike polynomials superposition, and then divide the deep-learning-involved phase unwrapping methods into deep-learning-performed regression, deep-learning-performed wrap count, and deep-learning-assisted denoising. For the phase dataset generation methods, the richness of the datasets and the generalization capabilities of the trained networks are compared in detail. In addition, the deep-learning-involved methods are analyzed and compared with the traditional methods in ideal, noisy, discontinuous, and aliasing cases. Finally, we give suggestions on the best methods for different situations and propose the potential development direction for the dataset generation method, neural network structure, generalization ability enhancement, and neural network training strategy for the deep-learning-involved spatial phase unwrapping methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助谨慎的音响采纳,获得10
1秒前
1秒前
zuo发布了新的文献求助10
2秒前
yyshhcyuwhegy发布了新的文献求助10
2秒前
zou完成签到,获得积分10
2秒前
快乐邮递员完成签到,获得积分10
2秒前
3秒前
3秒前
chem完成签到,获得积分10
4秒前
4秒前
zuo发布了新的文献求助10
5秒前
无花果应助大力鑫采纳,获得10
5秒前
潘越完成签到,获得积分10
5秒前
Guo应助欣新采纳,获得10
6秒前
笨笨棒球发布了新的文献求助10
6秒前
6秒前
6666发布了新的文献求助10
7秒前
7秒前
7秒前
wanting发布了新的文献求助10
9秒前
SYLH应助开心的花卷采纳,获得10
9秒前
暴富发布了新的文献求助10
10秒前
琪凯定理发布了新的文献求助10
10秒前
小初完成签到,获得积分10
10秒前
11秒前
11秒前
小蘑菇应助Hsia采纳,获得30
12秒前
华仔应助yyshhcyuwhegy采纳,获得10
12秒前
12秒前
wangqinlei发布了新的文献求助20
12秒前
独特的绯完成签到,获得积分10
13秒前
13秒前
13秒前
研友_LJQ4o8完成签到,获得积分10
13秒前
14秒前
puppy完成签到,获得积分10
14秒前
修仙中应助Dr大壮采纳,获得10
15秒前
16秒前
17秒前
小蘑菇应助歌德商务楼采纳,获得10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139918
求助须知:如何正确求助?哪些是违规求助? 3676879
关于积分的说明 11622220
捐赠科研通 3370851
什么是DOI,文献DOI怎么找? 1851690
邀请新用户注册赠送积分活动 914635
科研通“疑难数据库(出版商)”最低求助积分说明 829411