Machine learning-assisted data filtering and QSAR models for prediction of chemical acute toxicity on rat and mouse

数量结构-活动关系 化学毒性 急性毒性 机器学习 毒性 计算机科学 人工智能 计算生物学 生物 化学 有机化学
作者
Tao Bo,Yaohui Lin,Jinglong Han,Zhineng Hao,Jingfu Liu
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:452: 131344-131344 被引量:19
标识
DOI:10.1016/j.jhazmat.2023.131344
摘要

Machine learning (ML) methods provide a new opportunity to build quantitative structure-activity relationship (QSAR) models for predicting chemicals’ toxicity based on large toxicity data sets, but they are limited in insufficient model robustness due to poor data set quality for chemicals with certain structures. To address this issue and improve model robustness, we built a large data set on rat oral acute toxicity for thousands of chemicals, then used ML to filter chemicals favorable for regression models (CFRM). In comparison to chemicals not favorable for regression models (CNRM), CFRM accounted for 67% of chemicals in the original data set, and had a higher structural similarity and a smaller toxicity distribution in 2–4 log10 (mg/kg). The performance of established regression models for CFRM was greatly improved, with root-mean-square deviations (RMSE) in the range of 0.45–0.48 log10 (mg/kg). Classification models were built for CNRM using all chemicals in the original data set, and the area under receiver operating characteristic (AUROC) reached 0.75–0.76. The proposed strategy was successfully applied to a mouse oral acute data set, yielding RMSE and AUROC in the range of 0.36–0.38 log10 (mg/kg) and 0.79, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Flac发布了新的文献求助10
3秒前
4秒前
弓纪世发布了新的文献求助10
4秒前
burrrrr发布了新的文献求助10
5秒前
6秒前
丘比特应助念波采纳,获得10
6秒前
彩色觅荷发布了新的文献求助10
6秒前
可爱的涵菡完成签到,获得积分10
7秒前
犇骉发布了新的文献求助10
7秒前
7秒前
李爱国应助荔枝草莓酱采纳,获得10
10秒前
Falling发布了新的文献求助10
10秒前
Lucas应助纯子采纳,获得10
10秒前
12秒前
牛马完成签到,获得积分10
13秒前
zhuboujs发布了新的文献求助10
14秒前
14秒前
16秒前
xixi发布了新的文献求助10
17秒前
领导范儿应助彩色觅荷采纳,获得10
18秒前
nenoaowu发布了新的文献求助10
18秒前
21秒前
zhuboujs完成签到,获得积分10
21秒前
WissF-完成签到,获得积分10
23秒前
单纯契完成签到 ,获得积分10
24秒前
24秒前
Akim应助烂漫剑采纳,获得30
25秒前
慕青应助科研通管家采纳,获得10
25秒前
dachengzi应助科研通管家采纳,获得10
25秒前
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
fengpu发布了新的文献求助10
25秒前
星辰大海应助科研通管家采纳,获得10
26秒前
华仔应助科研通管家采纳,获得10
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得30
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800387
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326311
捐赠科研通 3062106
什么是DOI,文献DOI怎么找? 1680836
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572