Physically enhanced training for modeling rate-independent plasticity with feedforward neural networks

人工神经网络 计算机科学 前馈 分歧(语言学) 理论(学习稳定性) 过程(计算) 趋同(经济学) 规范化(社会学) 领域(数学) 计算 前馈神经网络 人工智能 机器学习 算法 控制工程 数学 工程类 操作系统 经济增长 哲学 社会学 语言学 经济 纯数学 人类学
作者
Patrick Weber,Werner Wagner,Steffen Freitag
出处
期刊:Computational Mechanics [Springer Nature]
卷期号:72 (4): 827-857 被引量:28
标识
DOI:10.1007/s00466-023-02316-9
摘要

Abstract In recent years, a lot of progress has been made in the field of material modeling with artificial neural networks (ANNs). However, the following drawbacks persist to this day: ANNs need a large amount of data for the training process. This is not realistic, if real world experiments are intended to be used as data basis. Additionally, the application of ANN material models in finite element (FE) calculations is challenging because local material instabilities can lead to divergence within the solution algorithm. In this paper, we extend the approach of constrained neural network training from [28] to elasto-plastic material behavior, modeled by an incrementally defined feedforward neural network. Purely stress and strain dependent equality and inequality constraints are introduced, including material stability, stationarity, normalization, symmetry and the prevention of energy production. In the Appendices, we provide a comprehensive framework on how to implement these constraints in a gradient based optimization algorithm. We show, that ANN material models with training enhanced by physical constraints leads to a broader capture of the material behavior that underlies the given training data. This is especially the case, if a limited amount of data is available, which is important for a practical application. Furthermore, we show that these ANN models are superior to classically trained ANNs in FE computations when it comes to convergence behavior, stability, and physical interpretation of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助Jere采纳,获得20
2秒前
3秒前
一百度黑完成签到,获得积分10
7秒前
浮游应助lxl采纳,获得10
7秒前
12秒前
浮游应助科研通管家采纳,获得10
13秒前
Mic应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得30
13秒前
所所应助科研通管家采纳,获得10
13秒前
13秒前
Mic应助科研通管家采纳,获得10
13秒前
Zx_1993应助科研通管家采纳,获得20
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Mic应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
Zx_1993应助科研通管家采纳,获得20
13秒前
Mic应助科研通管家采纳,获得10
13秒前
Mic应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得30
13秒前
共享精神应助科研通管家采纳,获得20
13秒前
shhoing应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
14秒前
yang完成签到,获得积分20
14秒前
qwer发布了新的文献求助10
18秒前
19秒前
华仔应助阳光的梦寒采纳,获得50
20秒前
21秒前
21秒前
Orange应助qwer采纳,获得10
22秒前
chichi发布了新的文献求助10
26秒前
小马甲应助邢智超采纳,获得10
27秒前
EASA发布了新的文献求助10
29秒前
在水一方应助qhcaywy采纳,获得10
30秒前
周久完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533