脂质双层
纳米颗粒
可滴定酸
脂泡
纳米技术
化学
生物物理学
材料科学
生物化学
膜
生物
作者
Yu Cao,Jin Zhu,Jianlong Kou,D. Peter Tieleman,Qing Liang
标识
DOI:10.1021/acs.jctc.4c00231
摘要
pH-responsive nanoparticles are ideal vehicles for drug delivery and are widely used in cell imaging in targeted therapy of cancer, which usually has a weakly acidic microenvironment. In this work, we constructed a titratable molecular model for nanoparticles grafted with ligands of pH-sensitive carboxylic acids and investigated the interactions between the nanoparticles and the lipid bilayer in varying pH environments. We mainly examined the effect of the grafting density of the pH-sensitive ligands of the nanoparticles on the interactions of the nanoparticles with the lipid bilayer. The results show that the nanoparticles can penetrate the lipid bilayer only when the pH value is lower than a critical value, which can be readily modulated to the specific pH value of the tumor microenvironment by changing the ligand grafting density. This work provides some insights into modulating the interactions between the pH-sensitive nanoparticles and cellular membranes to realize targeted drug delivery to tumors based on their specific pH environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI