Analysis and Visualization of Single-Cell Sequencing Data with Scanpy and MetaCell: A Tutorial

可视化 计算机科学 计算生物学 数据可视化 生物 数据挖掘
作者
Yanjun Li,Chaoyue Sun,Daria Y. Romanova,Dapeng Wu,Ruogu Fang,Leonid L. Moroz
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 383-445
标识
DOI:10.1007/978-1-0716-3642-8_17
摘要

The emergence and development of single-cell RNA sequencing (scRNA-seq) techniques enable researchers to perform large-scale analysis of the transcriptomic profiling at cell-specific resolution. Unsupervised clustering of scRNA-seq data is central for most studies, which is essential to identify novel cell types and their gene expression logics. Although an increasing number of algorithms and tools are available for scRNA-seq analysis, a practical guide for users to navigate the landscape remains underrepresented. This chapter presents an overview of the scRNA-seq data analysis pipeline, quality control, batch effect correction, data standardization, cell clustering and visualization, cluster correlation analysis, and marker gene identification. Taking the two broadly used analysis packages, i.e., Scanpy and MetaCell, as examples, we provide a hands-on guideline and comparison regarding the best practices for the above essential analysis steps and data visualization. Additionally, we compare both packages and algorithms using a scRNA-seq dataset of the ctenophore Mnemiopsis leidyi, which is representative of one of the earliest animal lineages, critical to understanding the origin and evolution of animal novelties. This pipeline can also be helpful for analyses of other taxa, especially prebilaterian animals, where these tools are under development (e.g., placozoan and Porifera).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
乔垣结衣应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
乔垣结衣应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
goldfish完成签到,获得积分10
2秒前
2秒前
3秒前
ABB完成签到,获得积分10
4秒前
5秒前
5秒前
Lucas应助HL采纳,获得10
5秒前
荣耀完成签到,获得积分20
5秒前
潇洒的小蕾完成签到,获得积分10
8秒前
9秒前
受伤雨南发布了新的文献求助30
9秒前
10秒前
lucy发布了新的文献求助10
10秒前
meng发布了新的文献求助10
11秒前
忧虑的靖巧完成签到 ,获得积分10
12秒前
12秒前
汉堡包应助zhouleiwang采纳,获得10
13秒前
13秒前
研友_LMgz0Z发布了新的文献求助10
15秒前
Augustines完成签到,获得积分10
15秒前
17秒前
受伤雨南完成签到,获得积分10
18秒前
CodeCraft应助HL采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778324
求助须知:如何正确求助?哪些是违规求助? 3323927
关于积分的说明 10216572
捐赠科研通 3039206
什么是DOI,文献DOI怎么找? 1667877
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385