The development of a prediction model based on deep learning for prognosis prediction of gastrointestinal stromal tumor: a SEER-based study

布里氏评分 医学 主旨 队列 接收机工作特性 比例危险模型 内科学 肿瘤科 人工智能 间质细胞 计算机科学
作者
Jun‐Jie Zeng,Kai Li,Fengyu Cao,Yongbin Zheng
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-56701-2
摘要

Abstract Accurately predicting the prognosis of Gastrointestinal stromal tumor (GIST) patients is an important task. The goal of this study was to create and assess models for GIST patients' survival patients using the Surveillance, Epidemiology, and End Results Program (SEER) database based on the three different deep learning models. Four thousand five hundred thirty-eight patients were enrolled in this study and divided into training and test cohorts with a 7:3 ratio; the training cohort was used to develop three different models, including Cox regression, RSF, and DeepSurv model. Test cohort was used to evaluate model performance using c-index, Brier scores, calibration, and the area under the curve (AUC). The net benefits at risk score stratification of GIST patients based on the optimal model was compared with the traditional AJCC staging system using decision curve analysis (DCA). The clinical usefulness of risk score stratification compared to AJCC tumor staging was further assessed using the Net Reclassification Index (NRI) and Integrated Discrimination Improvement (IDI). The DeepSurv model predicted cancer-specific survival (CSS) in GIST patients showed a higher c-index (0.825), lower Brier scores (0.142), and greater AUC of receiver operating characteristic (ROC) analysis (1-year ROC:0.898; 3-year:0.853, and 5-year ROC: 0.856). The calibration plots demonstrated good agreement between the DeepSurv model's forecast and actual results. The NRI values ( training cohort: 0.425 for 1-year, 0.329 for 3-year and 0.264 for 5-year CSS prediction; test cohort:0.552 for 1-year,0.309 for 3-year and 0.255 for 5-year CSS prediction) and IDI (training cohort: 0.130 for 1-year,0.141 for 5-year and 0.155 for 10-year CSS prediction; test cohort: 0.154 for 1-year,0.159 for 3-year and 0.159 for 5-year CSS prediction) indicated that the risk score stratification performed significantly better than the AJCC staging alone (P < 0.001). DCA demonstrated the risk score stratification as more clinically beneficial and discriminatory than AJCC staging. Finally, an interactive native web-based prediction tool was constructed for the survival prediction of GIST patients. This study established a high-performance prediction model for projecting GIST patients based on deep learning, which has advantages in predicting each person's prognosis and risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷卷完成签到,获得积分10
1秒前
Ava应助打地鼠工人采纳,获得10
1秒前
2秒前
4秒前
5秒前
玫莓发布了新的文献求助20
6秒前
6秒前
小王同学发布了新的文献求助10
8秒前
飞快的厉发布了新的文献求助10
10秒前
刻苦的紫霜完成签到,获得积分20
10秒前
峡星牙完成签到,获得积分10
11秒前
是个憨憨发布了新的文献求助10
12秒前
Selenaxue发布了新的文献求助10
13秒前
14秒前
科研通AI5应助标致惋庭采纳,获得10
14秒前
16秒前
罗实完成签到 ,获得积分10
17秒前
然463完成签到 ,获得积分10
19秒前
baihanjunluo完成签到,获得积分10
19秒前
19秒前
MITNO1发布了新的文献求助10
20秒前
20秒前
酷波er应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
大个应助洛洛采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
HMONEY应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
Cherish应助科研通管家采纳,获得10
21秒前
眼睛大的书易完成签到,获得积分10
22秒前
SciGPT应助飞快的厉采纳,获得10
22秒前
23秒前
ywl完成签到 ,获得积分10
24秒前
xx发布了新的文献求助10
25秒前
28秒前
imemorizedpi发布了新的文献求助10
29秒前
Selenaxue完成签到,获得积分10
30秒前
33秒前
33秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321756
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680172
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445