Dynamic path planning via Dueling Double Deep Q-Network (D3QN) with prioritized experience replay

计算机科学 路径(计算) 运动规划 人工智能 计算机网络 机器人
作者
Mehmet Gök
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:158: 111503-111503 被引量:29
标识
DOI:10.1016/j.asoc.2024.111503
摘要

Path planning is a key requirement for mobile robots employed for different tasks such as rescue or transport missions. Conventional methods such as A⁎ or Dijkstra to tackle path planning problem need a premise map of the robot's environment. Nowadays, dynamic path planning is popular research topic, which drives mobile robots without prior static requirements. Deep reinforcement learning (DRL), which is another popular research area, is being harnessed to solve dynamic path planning problem by the researchers. In this study, Deep Q-Networks, which is a subdomain of DRL are opted to solve dynamic path planning problem. We first employ well known techniques Double Deep Q-Networks (D2QN) and Dueling Double Deep Q-Networks (D3QN) to train a model which can drive a mobile robot in environments with static and dynamic obstacles within 3 different configurations. Then we propose D3QN with Prioritized Experience Replay (PER) extension in order to further optimize the DRL model. We created a test bed to measure the performance of the DRL models against 99 randomly generated goal locations. According to our experiments, D3QN-PER method performs better than D2QN and D3QN in terms of path length and travel time to the goal without any collisions. Robot Operating System and Gazebo simulation environment is utilized to realize the training and testing environments, thus, the trained DRL models can be deployed to any ROS compatible robot seamlessly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满座发布了新的文献求助10
1秒前
热心的巧克力完成签到,获得积分10
1秒前
1秒前
1秒前
Fair完成签到,获得积分10
2秒前
2秒前
李爱国应助moo采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
一枚研究僧完成签到,获得积分0
3秒前
dcx完成签到,获得积分10
3秒前
3秒前
大胆嘞完成签到 ,获得积分10
3秒前
田様应助研友_nqvkOZ采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
壹贰叁应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
Hilda007应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
ruicao发布了新的文献求助10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
小金鱼完成签到,获得积分10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
合适的毛豆完成签到,获得积分10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得30
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
torch132完成签到,获得积分0
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
bkagyin应助超帅的荷花采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
ccm应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489302
求助须知:如何正确求助?哪些是违规求助? 4588013
关于积分的说明 14417128
捐赠科研通 4519737
什么是DOI,文献DOI怎么找? 2476385
邀请新用户注册赠送积分活动 1461857
关于科研通互助平台的介绍 1435004