EKGDR: An End-to-End Knowledge Graph-Based Method for Computational Drug Repurposing

重新调整用途 药物重新定位 端到端原则 计算机科学 图形 分类 药品 机器学习 药物发现 数据挖掘 人工智能 医学 生物信息学 理论计算机科学 生物 生态学 精神科
作者
Javad Tayebi,Bagher BabaAli
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (6): 1868-1881 被引量:4
标识
DOI:10.1021/acs.jcim.3c01925
摘要

The lengthy and expensive process of developing new drugs from scratch, coupled with a high failure rate, has prompted the emergence of drug repurposing/repositioning as a more efficient and cost-effective approach. This approach involves identifying new therapeutic applications for existing approved drugs, leveraging the extensive drug-related data already gathered. However, the diversity and heterogeneity of data, along with the limited availability of known drug-disease interactions, pose significant challenges to computational drug design. To address these challenges, this study introduces EKGDR, an end-to-end knowledge graph-based approach for computational drug repurposing. EKGDR utilizes the power of a drug knowledge graph, a comprehensive repository of drug-related information that encompasses known drug interactions and various categorization information, as well as structural molecular descriptors of drugs. EKGDR employs graph neural networks, a cutting-edge graph representation learning technique, to embed the drug knowledge graph (nodes and relations) in an end-to-end manner. By doing so, EKGDR can effectively learn the underlying causes (intents) behind drug-disease interactions and recursively aggregate and combine relational messages between nodes along different multihop neighborhood paths (relational paths). This process generates representations of disease and drug nodes, enabling EKGDR to predict the interaction probability for each drug-disease pair in an end-to-end manner. The obtained results demonstrate that EKGDR outperforms previous models in all three evaluation metrics: area under the receiver operating characteristic curve (AUROC = 0.9475), area under the precision-recall curve (AUPRC = 0.9490), and recall at the top-200 recommendations (Recall@200 = 0.8315). To further validate EKGDR's effectiveness, we evaluated the top-20 candidate drugs suggested for each of Alzheimer's and Parkinson's diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Canda完成签到 ,获得积分10
2秒前
wanci应助Goodnye采纳,获得10
2秒前
5秒前
黎长江完成签到,获得积分10
6秒前
忧虑的初晴完成签到,获得积分10
6秒前
jin_strive完成签到,获得积分10
7秒前
陆王牛马完成签到 ,获得积分10
7秒前
最初呢发布了新的文献求助10
9秒前
董竹君完成签到,获得积分10
10秒前
qiao给一颗红葡萄的求助进行了留言
12秒前
科目三三次郎完成签到 ,获得积分10
14秒前
耍酷问兰完成签到,获得积分10
15秒前
图图完成签到 ,获得积分10
20秒前
猪猪hero发布了新的文献求助10
20秒前
21秒前
23秒前
25秒前
涵哈哈哈哈哈完成签到 ,获得积分10
26秒前
最初呢完成签到,获得积分10
26秒前
lkgxwpf发布了新的文献求助10
26秒前
QQ发布了新的文献求助10
28秒前
以一发布了新的文献求助50
29秒前
monan发布了新的文献求助10
30秒前
Akim应助111采纳,获得10
31秒前
yunxiao完成签到 ,获得积分10
38秒前
吃花生酱的猫完成签到,获得积分10
38秒前
wanci应助快来吃甜瓜采纳,获得10
39秒前
冯哥侃大山完成签到 ,获得积分10
41秒前
冷静梦之发布了新的文献求助10
42秒前
Ava应助拼搏的笑容采纳,获得10
44秒前
zy完成签到,获得积分10
45秒前
47秒前
47秒前
科研通AI5应助zy采纳,获得10
48秒前
48秒前
科研通AI2S应助千倾采纳,获得10
49秒前
50秒前
51秒前
winux007发布了新的文献求助10
52秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781847
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231205
捐赠科研通 3042315
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808