Boths: Super Lightweight Network-Enabled Underwater Image Enhancement

光学(聚焦) 符号 像素 图像(数学) 计算机科学 频道(广播) 功能(生物学) 算法 人工智能 数学 物理 算术 电信 进化生物学 生物 光学
作者
Xu Liu,Sen Lin,Kaichen Chi,Zhiyong Tao,Yang Zhao
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:14
标识
DOI:10.1109/lgrs.2022.3230049
摘要

Since light is scattered and absorbed by water, underwater images have inherent degradation (e.g., hazing, color shift), consequently impeding the development of remotely operated vehicles (ROVs). Toward this end, we propose a novel method, referred to as ${B}$ est ${o}\text{f}$ Bo th World ${s}$ (Boths). With parameters of only 0.0064 M, Boths can be considered a super lightweight neural network for underwater image enhancement. On the whole, it has three levels: structure and detail features; pixel and channel dimensions; high- and low-frequency information. Each of these three levels represents "Best of Both Worlds." Initially, by interacting with structure and detail features, Boths can focus on these two aspects at the same time. Further, our network can simultaneously consider channel and pixel dimensions through 3-D attention learning, which is more similar to human visual perception. Lastly, the proposed model can focus on high- and low-frequency information, through a novel loss function based on the wavelet transforms. Upon subsequent analysis and evaluation, Boths has shown superior performance compared with state-of-the-art (SOTA) methods. Our models and datasets are publicly available at: https://github.com/perseveranceLX/Boths .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤小鸽子完成签到,获得积分10
刚刚
自由从筠完成签到 ,获得积分10
1秒前
1秒前
爆米花应助DDS采纳,获得10
1秒前
2秒前
乐乐应助拼搏惜金采纳,获得30
2秒前
呀呀呀呀完成签到,获得积分10
2秒前
3秒前
3秒前
科研助手6应助开朗青旋采纳,获得10
3秒前
kevin完成签到,获得积分10
3秒前
可爱的函函应助文昊采纳,获得30
3秒前
田様应助HHH采纳,获得10
4秒前
4秒前
redtom完成签到,获得积分10
4秒前
4秒前
fuyuhaoy完成签到,获得积分10
5秒前
阔达的金鱼完成签到,获得积分10
5秒前
5秒前
传奇3应助科研通管家采纳,获得30
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
后来应助科研通管家采纳,获得10
6秒前
6秒前
bin发布了新的文献求助30
6秒前
椋鸟应助科研通管家采纳,获得10
6秒前
Esperanza完成签到,获得积分10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得30
6秒前
jzy完成签到,获得积分10
7秒前
大个应助科研通管家采纳,获得10
7秒前
石榴发布了新的文献求助10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
科研通AI5应助静鸭采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
利物鸟贝拉完成签到,获得积分10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812149
求助须知:如何正确求助?哪些是违规求助? 3356590
关于积分的说明 10382821
捐赠科研通 3073708
什么是DOI,文献DOI怎么找? 1688425
邀请新用户注册赠送积分活动 812137
科研通“疑难数据库(出版商)”最低求助积分说明 766960