Development and validation of an artificial intelligence‐based system for predicting colorectal cancer invasion depth using multi‐modal data

医学 人工智能 结肠镜检查 结直肠癌 情态动词 癌症 内科学 计算机科学 化学 高分子化学
作者
Liwen Yao,Zihua Lu,Genhua Yang,Wei Zhou,Y Xu,Mingwen Guo,Xu Huang,Chunping He,Rui Zhou,Yunchao Deng,Huiling Wu,Boru Chen,Rongrong Gong,Lihui Zhang,Mengjiao Zhang,Wei Gong,Honggang Yu
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:35 (5): 625-635 被引量:16
标识
DOI:10.1111/den.14493
摘要

Accurate endoscopic optical prediction of the depth of cancer invasion is critical for guiding an optimal treatment approach of large sessile colorectal polyps but was hindered by insufficient endoscopists expertise and inter-observer variability. We aimed to construct a clinically applicable artificial intelligence (AI) system for the identification of presence of cancer invasion in large sessile colorectal polyps.A deep learning-based colorectal cancer invasion calculation (CCIC) system was constructed. Multi-modal data including clinical information, white light (WL) and image-enhanced endoscopy (IEE) were included for training. The system was trained using 339 lesions and tested on 198 lesions across three hospitals. Man-machine contest, reader study and video validation were further conducted to evaluate the performance of CCIC.The overall accuracy of CCIC system using image and video validation was 90.4% and 89.7%, respectively. In comparison with 14 endoscopists, the accuracy of CCIC was comparable with expert endoscopists but superior to all the participating senior and junior endoscopists in both image and video validation set. With CCIC augmentation, the average accuracy of junior endoscopists improved significantly from 75.4% to 85.3% (P = 0.002).This deep learning-based CCIC system may play an important role in predicting the depth of cancer invasion in colorectal polyps, thus determining treatment strategies for these large sessile colorectal polyps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzjz发布了新的文献求助30
1秒前
2秒前
LL完成签到,获得积分10
2秒前
顾北发布了新的文献求助10
3秒前
4秒前
清清清完成签到 ,获得积分10
5秒前
上官若男应助付创采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Jion发布了新的文献求助10
6秒前
xjcy应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
乔乔兔应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
8秒前
8秒前
今后应助campus采纳,获得10
8秒前
田様应助biiii采纳,获得10
8秒前
J_C_Van发布了新的文献求助10
9秒前
9秒前
9秒前
Liangyong_Fu完成签到 ,获得积分10
10秒前
10秒前
10秒前
fmm完成签到,获得积分10
10秒前
isong发布了新的文献求助10
11秒前
Kerrie发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
南浅发布了新的文献求助10
13秒前
J_C_Van完成签到,获得积分10
14秒前
14秒前
一包辣条发布了新的文献求助10
15秒前
15秒前
顾北完成签到,获得积分10
15秒前
MichelleLu发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4677318
求助须知:如何正确求助?哪些是违规求助? 4054772
关于积分的说明 12538388
捐赠科研通 3748907
什么是DOI,文献DOI怎么找? 2070671
邀请新用户注册赠送积分活动 1099718
科研通“疑难数据库(出版商)”最低求助积分说明 979341