Development and validation of an artificial intelligence‐based system for predicting colorectal cancer invasion depth using multi‐modal data

医学 人工智能 结肠镜检查 结直肠癌 情态动词 癌症 内科学 计算机科学 化学 高分子化学
作者
Liwen Yao,Zihua Lu,Genhua Yang,Wei Zhou,Y Xu,Mingwen Guo,Xu Huang,Chunping He,Rui Zhou,Yunchao Deng,Huiling Wu,Boru Chen,Rongrong Gong,Lihui Zhang,Mengjiao Zhang,Wei Gong,Honggang Yu
出处
期刊:Digestive Endoscopy [Wiley]
卷期号:35 (5): 625-635 被引量:14
标识
DOI:10.1111/den.14493
摘要

Accurate endoscopic optical prediction of the depth of cancer invasion is critical for guiding an optimal treatment approach of large sessile colorectal polyps but was hindered by insufficient endoscopists expertise and inter-observer variability. We aimed to construct a clinically applicable artificial intelligence (AI) system for the identification of presence of cancer invasion in large sessile colorectal polyps.A deep learning-based colorectal cancer invasion calculation (CCIC) system was constructed. Multi-modal data including clinical information, white light (WL) and image-enhanced endoscopy (IEE) were included for training. The system was trained using 339 lesions and tested on 198 lesions across three hospitals. Man-machine contest, reader study and video validation were further conducted to evaluate the performance of CCIC.The overall accuracy of CCIC system using image and video validation was 90.4% and 89.7%, respectively. In comparison with 14 endoscopists, the accuracy of CCIC was comparable with expert endoscopists but superior to all the participating senior and junior endoscopists in both image and video validation set. With CCIC augmentation, the average accuracy of junior endoscopists improved significantly from 75.4% to 85.3% (P = 0.002).This deep learning-based CCIC system may play an important role in predicting the depth of cancer invasion in colorectal polyps, thus determining treatment strategies for these large sessile colorectal polyps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白菜发布了新的文献求助10
2秒前
2秒前
kang发布了新的文献求助20
2秒前
DOMMIE完成签到 ,获得积分10
4秒前
高大凌寒发布了新的文献求助210
4秒前
寒冷的奇异果完成签到,获得积分10
5秒前
HXL完成签到,获得积分10
5秒前
端庄洪纲发布了新的文献求助10
6秒前
6秒前
7秒前
浪迹天涯完成签到 ,获得积分10
8秒前
一轮太阳和幻想完成签到,获得积分10
9秒前
BY完成签到,获得积分10
10秒前
超级白昼发布了新的文献求助10
10秒前
hongxuezhi发布了新的文献求助30
11秒前
Yc应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
Yc应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
12秒前
18秒前
奋斗瑶完成签到,获得积分10
19秒前
炙热灰狼发布了新的文献求助10
23秒前
科研通AI2S应助薛定谔的猫采纳,获得10
24秒前
26秒前
hongxuezhi完成签到,获得积分10
27秒前
yyy发布了新的文献求助10
30秒前
32秒前
shain完成签到,获得积分10
33秒前
Xiaoxiao应助明亮世德采纳,获得10
36秒前
科研通AI5应助姑姑卡采纳,获得10
37秒前
打滚完成签到,获得积分10
37秒前
37秒前
Anatee完成签到,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777289
求助须知:如何正确求助?哪些是违规求助? 3322579
关于积分的说明 10210765
捐赠科研通 3037943
什么是DOI,文献DOI怎么找? 1666984
邀请新用户注册赠送积分活动 797884
科研通“疑难数据库(出版商)”最低求助积分说明 758061