已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The retrieval of aerosol optical properties based on a random forest machine learning approach: Exploration of geostationary satellite images

遥感 地球静止轨道 随机森林 气溶胶 卫星 均方误差 辐射传输 环境科学 计算机科学 大气辐射传输码 大气校正 气象学 人工智能 地质学 数学 统计 光学 物理 天文
作者
Fang Bao,Kai-Yao Huang,Shengbiao Wu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:286: 113426-113426 被引量:6
标识
DOI:10.1016/j.rse.2022.113426
摘要

Aerosol optical properties are among the most fundamental parameters in atmospheric environmental studies. Satellite aerosols retrievals that are based on deep learning or machine learning approach have been widely discussed in remote sensing studies, but the flexible random forest (RF) model has not received much attention in the retrieval of geostationary satellite, like Himawari-8. Thus, the Himawari-8 aerosol retrieval achieved by RF model requires further investigation and optimization. Based on the radiative transfer equation, this study proposed a RF model driven by a differential operator, which quantifies a simple linear relationship between aerosol optical depth (AOD) and top-of-atmosphere (TOA) reflectance enhancement. The spectral information of aerosols is achieved by independent TOA reflectance comparison between images rather than one result from multiple band synthesis. The method allows simple feature inputs and shows weak dependence on auxiliary data. It also achieves simultaneous retrievals over different surfaces and maintains mathematical correlation between spectral AODs and Angstrom Exponents (AE). The model performance was evaluated using a series of comprehensive temporal and spatial validation analyses. A sample-based tenfold cross-validation (10-CV) shows that the new method can simultaneously improve the estimation of aerosol properties, with considerably high correlation coefficients (R2) of 0.85 for AODs at the 0.50 μm wavelengths, a mean absolute error (MAE) of 0.08, a root mean square error (RMSE) of 0.13 and >70% of the samples fell within the AOD expected error (EE). The high accuracy of the spectral AOD retrievals also exhibits good performance on AE calculations, with at least 2/3 of the samples falling within the EE. The site based 10-CV also evaluates the spatial predictions on AODs at the 0.50 μm wavelength, with R2 of 0.67, MAE of 0.12 and RMSE of 0.18. It also has outperformed the Himawari operational aerosol products and appeared to be comparable to other popular machine learning models with better AE retrievals in some typical regions. Two typical regional pollution cases also highlight the advantages of the new aerosol monitoring approach. The 5 km resolution aerosol retrievals exhibit good spatial coverage and performance when describing the regional pollution levels and types. The proposed method improves the performance of RF in retrieving aerosol properties from geostationary satellites and also offers a new prospective for aerosol remote sensing using machine learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pinklay完成签到 ,获得积分10
1秒前
Akim应助fduqyy采纳,获得10
1秒前
俊逸成危发布了新的文献求助10
1秒前
2秒前
3秒前
Splaink完成签到 ,获得积分10
3秒前
坚强的蔷薇薇完成签到 ,获得积分10
3秒前
美满的乐瑶完成签到 ,获得积分10
3秒前
CXS完成签到,获得积分10
4秒前
Hedy应助小马采纳,获得20
5秒前
6秒前
Souliko发布了新的文献求助10
6秒前
程风破浪发布了新的文献求助10
7秒前
隐形曼青应助烤全羊采纳,获得10
7秒前
8秒前
CTT发布了新的文献求助10
9秒前
TXZ06完成签到,获得积分10
9秒前
9秒前
10秒前
长情的涔完成签到 ,获得积分10
11秒前
14秒前
yuyiyi完成签到,获得积分10
14秒前
14秒前
123完成签到 ,获得积分10
14秒前
14秒前
平常的念柏完成签到,获得积分10
15秒前
Yong完成签到,获得积分10
16秒前
Mr.Reese完成签到,获得积分10
17秒前
ruogu7完成签到,获得积分10
17秒前
苏苏发布了新的文献求助10
17秒前
夏夏完成签到 ,获得积分10
19秒前
19秒前
Wxxxxx完成签到 ,获得积分10
19秒前
乐风完成签到,获得积分10
19秒前
NLJY完成签到,获得积分10
20秒前
火星上唇膏完成签到 ,获得积分10
22秒前
九黎完成签到 ,获得积分10
23秒前
冷酷飞飞完成签到 ,获得积分10
24秒前
黄淮科研小白龙完成签到 ,获得积分10
25秒前
程风破浪完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476100
求助须知:如何正确求助?哪些是违规求助? 4577665
关于积分的说明 14362660
捐赠科研通 4505613
什么是DOI,文献DOI怎么找? 2468756
邀请新用户注册赠送积分活动 1456383
关于科研通互助平台的介绍 1430028