Reinforcement Learning and DEAR Framework for Solving the Qubit Mapping Problem

量子位元 计算机科学 量子计算机 量子电路 强化学习 布线(电子设计自动化) 量子门 转化(遗传学) 量子 理论计算机科学 拓扑(电路) 并行计算 算法 数学 量子纠错 人工智能 量子力学 物理 计算机网络 生物化学 基因 组合数学 化学
作者
ChingYao Huang,Chi-Hsiang Lien,Wai-Kei Mak
标识
DOI:10.1145/3508352.3549472
摘要

Quantum computing is gaining more and more attention due to its huge potential and the constant progress in quantum computer development. IBM and Google have released quantum architectures with more than 50 qubits. However, in these machines, the physical qubits are not fully connected so that two-qubit interaction can only be performed between specific pairs of the physical qubits. To execute a quantum circuit, it is necessary to transform it into a functionally equivalent one that respects the constraints imposed by the target architecture. Quantum circuit transformation inevitably introduces additional gates which reduces the fidelity of the circuit. Therefore, it is important that the transformation method completes the transformation with minimal overheads. It consists of two steps, initial mapping and qubit routing. Here we propose a reinforcement learning-based model to solve the initial mapping problem. Initial mapping is formulated as sequence-to-sequence learning and self-attention network is used to extract features from a circuit. For qubit routing, a DEAR (Dynamically-Extract-and-Route) framework is proposed. The framework iteratively extracts a subcircuit and uses A* search to determine when and where to insert additional gates. It helps to preserve the lookahead ability dynamically and to provide more accurate cost estimation efficiently during A* search. The experimental results show that our RL-model generates better initial mappings than the best known algorithms with 12% fewer additional gates in the qubit routing stage. Furthermore, our DEAR-framework outperforms the state-of-the-art qubit routing approach with 8.4% and 36.3% average reduction in the number of additional gates and execution time starting from the same initial mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想起昵称完成签到,获得积分10
刚刚
1秒前
含糊发布了新的文献求助10
2秒前
2秒前
3秒前
斯文白白完成签到,获得积分10
6秒前
7秒前
ziming完成签到 ,获得积分10
8秒前
丫丫发布了新的文献求助10
9秒前
语嘘嘘完成签到,获得积分10
9秒前
拾柒发布了新的文献求助10
10秒前
大模型应助uma采纳,获得10
11秒前
shuangyanli完成签到,获得积分10
15秒前
丫丫完成签到,获得积分10
17秒前
19秒前
21秒前
桐桐应助JeromeLi采纳,获得200
21秒前
puzhongjiMiQ完成签到,获得积分10
22秒前
那种完成签到,获得积分10
22秒前
123完成签到 ,获得积分10
22秒前
nnnnn完成签到 ,获得积分10
23秒前
陌路发布了新的文献求助10
23秒前
puzhongjiMiQ发布了新的文献求助10
25秒前
orixero应助hehehe采纳,获得10
29秒前
screct完成签到,获得积分10
31秒前
Ava应助陌路采纳,获得10
32秒前
33秒前
37秒前
上官凯凯完成签到 ,获得积分10
39秒前
hehehe发布了新的文献求助10
43秒前
棠真应助坚定的乐天采纳,获得10
44秒前
jenningseastera应助火火采纳,获得10
45秒前
付其喜完成签到,获得积分10
47秒前
乐乐应助会撒娇的雁易采纳,获得10
48秒前
ty心明亮完成签到 ,获得积分10
48秒前
路漫漫123完成签到,获得积分10
51秒前
53秒前
八一完成签到,获得积分10
54秒前
吃的饭广泛完成签到 ,获得积分10
55秒前
完美世界应助科研通管家采纳,获得10
55秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823540
求助须知:如何正确求助?哪些是违规求助? 3365885
关于积分的说明 10438226
捐赠科研通 3085083
什么是DOI,文献DOI怎么找? 1697149
邀请新用户注册赠送积分活动 816235
科研通“疑难数据库(出版商)”最低求助积分说明 769462