Reinforcement Learning and DEAR Framework for Solving the Qubit Mapping Problem

量子位元 计算机科学 量子计算机 量子电路 强化学习 布线(电子设计自动化) 量子门 转化(遗传学) 量子 理论计算机科学 拓扑(电路) 并行计算 算法 数学 量子纠错 人工智能 量子力学 物理 计算机网络 生物化学 基因 组合数学 化学
作者
ChingYao Huang,Chi-Hsiang Lien,Wai-Kei Mak
标识
DOI:10.1145/3508352.3549472
摘要

Quantum computing is gaining more and more attention due to its huge potential and the constant progress in quantum computer development. IBM and Google have released quantum architectures with more than 50 qubits. However, in these machines, the physical qubits are not fully connected so that two-qubit interaction can only be performed between specific pairs of the physical qubits. To execute a quantum circuit, it is necessary to transform it into a functionally equivalent one that respects the constraints imposed by the target architecture. Quantum circuit transformation inevitably introduces additional gates which reduces the fidelity of the circuit. Therefore, it is important that the transformation method completes the transformation with minimal overheads. It consists of two steps, initial mapping and qubit routing. Here we propose a reinforcement learning-based model to solve the initial mapping problem. Initial mapping is formulated as sequence-to-sequence learning and self-attention network is used to extract features from a circuit. For qubit routing, a DEAR (Dynamically-Extract-and-Route) framework is proposed. The framework iteratively extracts a subcircuit and uses A* search to determine when and where to insert additional gates. It helps to preserve the lookahead ability dynamically and to provide more accurate cost estimation efficiently during A* search. The experimental results show that our RL-model generates better initial mappings than the best known algorithms with 12% fewer additional gates in the qubit routing stage. Furthermore, our DEAR-framework outperforms the state-of-the-art qubit routing approach with 8.4% and 36.3% average reduction in the number of additional gates and execution time starting from the same initial mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偶然完成签到,获得积分20
1秒前
3秒前
xjian完成签到,获得积分10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
Joy应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
某某某应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
小花排草应助科研通管家采纳,获得20
4秒前
pluto应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得20
4秒前
KT完成签到,获得积分10
4秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
Lucy11grandma关注了科研通微信公众号
5秒前
乔垣结衣应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
颜千琴发布了新的文献求助10
8秒前
8秒前
ding应助j222采纳,获得10
9秒前
10秒前
田様应助王也夫采纳,获得10
10秒前
科研通AI5应助ssf采纳,获得10
12秒前
思源应助颜千琴采纳,获得10
12秒前
健壮雨完成签到,获得积分10
13秒前
甜美白昼完成签到,获得积分10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
Византийско-аланские отно- шения (VI–XII вв.) 500
Mechanics of Composite Strengthening 500
水稻光合CO2浓缩机制的创建及其作用研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4175859
求助须知:如何正确求助?哪些是违规求助? 3711116
关于积分的说明 11703907
捐赠科研通 3394211
什么是DOI,文献DOI怎么找? 1862286
邀请新用户注册赠送积分活动 921099
科研通“疑难数据库(出版商)”最低求助积分说明 833007