A newly developed hybrid method on pavement maintenance and rehabilitation optimization applying Whale Optimization Algorithm and random forest regression

随机森林 国际粗糙度指数 算法 元启发式 回归 计算机科学 机器学习 工程类 数学优化 数学 统计 表面光洁度 机械工程
作者
Hamed Naseri,Hamid Jahanbakhsh,Amirabbas Foomajd,Narek Galustanian,Mohammad M. Karimi,E. Owen D. Waygood
出处
期刊:International Journal of Pavement Engineering [Taylor & Francis]
卷期号:24 (2) 被引量:27
标识
DOI:10.1080/10298436.2022.2147672
摘要

Developing an accurate pavement prediction model plays a dominant role in pavement M&R optimization. Despite employing different robust machine learning techniques to predict pavement conditions, these methods have some weaknesses in synchronising with exact optimization algorithms. The main contribution of this study is to propose a novel method for optimizing the pavement M&R plan with high accuracy. Contrary to conventional approaches, a robust prediction algorithm, Random Forest Regression (RFR), is applied to predict the pavement International Roughness Index (IRI). In addition, Multiple Linear Regression (MLR) is employed to assess the performance of the proposed technique in terms of IRI prediction accuracy. Whale Optimization Algorithm (WOA), as a powerful metaheuristic optimization algorithm, is utilised to obtain the optimal solution to the pavement M&R optimization problem. RFR is run as an internal part of the WOA in the introduced method. Furthermore, Genetic Algorithm (GA) is used to examine the performance of the proposed approach in finding the optimal solution. The RFR results conclude a more accurate prediction of IRI than MLR based on all machine learning performance indicators. Furthermore, the newly developed hybrid model significantly outperforms GA in finding the optimal and cost-effective solution to the M&R optimization problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姚洋发布了新的文献求助10
2秒前
Thien应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
cdercder应助科研通管家采纳,获得10
2秒前
2秒前
搜集达人应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
VDC应助科研通管家采纳,获得30
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
Thien应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
Thien应助科研通管家采纳,获得10
3秒前
GXY完成签到,获得积分10
3秒前
林谷雨完成签到 ,获得积分10
3秒前
5秒前
6秒前
希望天下0贩的0应助Yuhong采纳,获得10
7秒前
不会失忆完成签到,获得积分10
8秒前
镜花水月完成签到,获得积分10
10秒前
10秒前
11秒前
关显锋发布了新的文献求助10
13秒前
随机子发布了新的文献求助200
14秒前
jhp完成签到 ,获得积分10
16秒前
17秒前
Fred发布了新的文献求助10
17秒前
big龙完成签到,获得积分10
20秒前
大个应助关显锋采纳,获得10
21秒前
24秒前
朝朝暮暮发布了新的文献求助10
24秒前
24秒前
陶醉的新瑶完成签到,获得积分10
24秒前
张叮当发布了新的文献求助10
24秒前
不会学术的羊完成签到,获得积分10
25秒前
bbb完成签到,获得积分10
26秒前
29秒前
bbb发布了新的文献求助10
31秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799070
求助须知:如何正确求助?哪些是违规求助? 3344776
关于积分的说明 10321432
捐赠科研通 3061226
什么是DOI,文献DOI怎么找? 1680094
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445