Towards Autonomous Endoscopic Image-Based Surgical Skill Assessment: Articulated Tool Pose Estimation

姿势 计算机视觉 计算机科学 人工智能 图像(数学)
作者
Renáta Nagyné Elek,Tamás Haidegger
标识
DOI:10.1109/iccc202255925.2022.9922725
摘要

Minimally Invasive Surgery (MIS) and RobotAssisted MIS (RAMIS) can help to improve the patient outcome through small skin incision, less blood loss, smaller scars and quicker recovery time. However, for surgeons to master, both MIS and RAMIS require extensive training. Autonomous surgical skill assessment can provide feedback to the surgeon, and can help with personalized training as well. Kinematic data is proven to be an effective tool for surgical skill classification, nevertheless, 2D image data-based surgical skill assessment is still an open challenge. If a motion data–-that is strongly correlated with the kinematic data-based on 2D images can be calculated, it can significantly improve the accuracy of image-based skill assessment solutions. In this paper, a surgical tool pose estimation technique was introduced for the da Vinci Surgical System's articulated tools, targeting autonomous technical skill assessment based on 2D endoscopic images. The pose estimation was done by shape features of the surgical tools, optical flow and iterative perspective n point transformation; the method does not require markers, kinematic data or the CAD model of the tool. The introduced technique was validated on the Synthetic MICCAI dataset, where it resulted 4.22, 4.23 and 3.95 mm mean absolute translational error along x, y, z axes, respectively, based on 8 videos, which contained 1906 frames altogether. The estimated rotation was not evaluated in the later experiments due to its inaccuracy. The motion smoothness features (log of Dimensionless Jerk and Spectral Arc Length) did not show significant differences between the generated and the original motion trajectories based on Wilcoxon signed rank tests. To prove the applicability of surgical skill assessment, the experienced noise added to JIGSAWS kinematic data, and skill classification was done with time series forest classifier. The results were 76.66%, 75% and 89% mean accuracy for suturing, needle-passing and knot-tying, respectively, where suturing accuracy outperforms the state of the art in 2D image-based solutions on the JIGSAWS dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
abtitw完成签到,获得积分10
刚刚
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
AKYDXS发布了新的文献求助10
2秒前
杨一周发布了新的文献求助10
2秒前
阔达语儿完成签到,获得积分10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
Maestro_S应助科研通管家采纳,获得10
2秒前
巴拉巴拉应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
Yanalee应助科研通管家采纳,获得10
3秒前
科研通AI2S应助无心的诗柳采纳,获得30
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得20
3秒前
3秒前
不安青牛应助科研通管家采纳,获得10
3秒前
w123发布了新的文献求助10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
走四方应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
圆锥香蕉应助科研通管家采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4419728
求助须知:如何正确求助?哪些是违规求助? 3900397
关于积分的说明 12128881
捐赠科研通 3546311
什么是DOI,文献DOI怎么找? 1946123
邀请新用户注册赠送积分活动 986318
科研通“疑难数据库(出版商)”最低求助积分说明 882508