Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols

医学 放射科 核医学 冠状动脉疾病 钙化积分 计算机断层摄影术 内科学 冠状动脉钙
作者
Sanne G. M. van Velzen,Nikolas Leßmann,Birgitta K. Velthuis,Ingrid E.M. Bank,H.J.G.D. van den Bongard,Tim Leiner,Pim A. de Jong,Wouter B. Veldhuis,Adolfo Correa,James G. Terry,J. Jeffrey Carr,Max A. Viergever,Helena M. Verkooijen,Ivana Išgum
出处
期刊:Radiology [Radiological Society of North America]
卷期号:295 (1): 66-79 被引量:192
标识
DOI:10.1148/radiol.2020191621
摘要

Background Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT protocols, their performance in a range of CT examination types is unknown. Purpose To evaluate the performance of a DL method for automatic calcium scoring across a wide range of CT examination types and to investigate whether the method can adapt to different types of CT examinations when representative images are added to the existing training data set. Materials and Methods The study included 7240 participants who underwent various types of nonenhanced CT examinations that included the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC) were quantified using a convolutional neural network trained with (a) 1181 low-dose chest CT examinations (baseline), (b) a small set of examinations of the respective type supplemented to the baseline (data specific), and (c) a combination of examinations of all available types (combined). Supplemental training sets contained 199–568 CT images depending on the calcium burden of each population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual (Agatston) CAC and (volume) TAC scoring and with linearly weighted κ values for cardiovascular risk categories (Agatston score; cardiovascular disease risk categories: 0, 1–10, 11–100, 101–400, >400). Results At baseline, the DL algorithm yielded ICCs of 0.79–0.97 for CAC and 0.66–0.98 for TAC across the range of different types of CT examinations. ICCs improved to 0.84–0.99 (CAC) and 0.92–0.99 (TAC) for CT protocol–specific training and to 0.85–0.99 (CAC) and 0.96–0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the κ value for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training. Conclusion A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite substantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol–specific images further improved algorithm performance. © RSNA, 2020 See also the editorial by Vannier in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助云泥采纳,获得10
1秒前
2秒前
3秒前
cxt完成签到,获得积分20
3秒前
活泼山雁发布了新的文献求助10
4秒前
1111发布了新的文献求助10
4秒前
5秒前
zho关闭了zho文献求助
7秒前
hying发布了新的文献求助10
7秒前
麦冬完成签到,获得积分20
7秒前
唐落音发布了新的文献求助10
9秒前
科研的牲口完成签到,获得积分10
9秒前
1111完成签到,获得积分10
11秒前
汉堡包应助云泥采纳,获得10
11秒前
勤恳迎梦完成签到,获得积分10
12秒前
Chris完成签到,获得积分10
13秒前
共享精神应助沉静从阳采纳,获得10
13秒前
唐落音完成签到,获得积分10
14秒前
内向莛发布了新的文献求助10
15秒前
袁晨悦完成签到 ,获得积分10
16秒前
丘比特应助dodoqia采纳,获得10
17秒前
硕shuo发布了新的文献求助20
17秒前
zho发布了新的文献求助10
18秒前
18秒前
20秒前
史淼荷发布了新的文献求助10
24秒前
24秒前
25秒前
溫蒂应助云泥采纳,获得10
25秒前
内向莛完成签到,获得积分10
25秒前
27秒前
我是老大应助赵鑫雅采纳,获得10
27秒前
30秒前
ShiRz发布了新的文献求助10
30秒前
麦冬发布了新的文献求助10
31秒前
32秒前
孤独的乐珍关注了科研通微信公众号
33秒前
34秒前
35秒前
十七完成签到 ,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944