Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram

雅卡索引 人工智能 分割 深度学习 计算机科学 计算机辅助设计 乳腺摄影术 Sørensen–骰子系数 计算机辅助诊断 乳腺癌 医学 数字乳腺摄影术 卷积神经网络 模式识别(心理学) 图像分割 内科学 癌症 工程制图 工程类
作者
Mugahed A. Al-antari,Mohammed A. Al‐masni,Tae‐Seong Kim
出处
期刊:Advances in Experimental Medicine and Biology [Springer Nature]
卷期号:: 59-72 被引量:81
标识
DOI:10.1007/978-3-030-33128-3_4
摘要

For computer-aided diagnosis (CAD), detection, segmentation, and classification from medical imagery are three key components to efficiently assist physicians for accurate diagnosis. In this chapter, a completely integrated CAD system based on deep learning is presented to diagnose breast lesions from digital X-ray mammograms involving detection, segmentation, and classification. To automatically detect breast lesions from mammograms, a regional deep learning approach called You-Only-Look-Once (YOLO) is used. To segment breast lesions, full resolution convolutional network (FrCN), a novel segmentation model of deep network, is implemented and used. Finally, three conventional deep learning models including regular feedforward CNN, ResNet-50, and InceptionResNet-V2 are separately adopted and used to classify or recognize the detected and segmented breast lesion as either benign or malignant. To evaluate the integrated CAD system for detection, segmentation, and classification, the publicly available and annotated INbreast database is used over fivefold cross-validation tests. The evaluation results of the YOLO-based detection achieved detection accuracy of 97.27%, Matthews’s correlation coefficient (MCC) of 93.93%, and F1-score of 98.02%. Moreover, the results of the breast lesion segmentation via FrCN achieved an overall accuracy of 92.97%, MCC of 85.93%, Dice (F1-score) of 92.69%, and Jaccard similarity coefficient of 86.37%. The detected and segmented breast lesions are classified via CNN, ResNet-50, and InceptionResNet-V2 achieving an average overall accuracies of 88.74%, 92.56%, and 95.32%, respectively. The performance evaluation results through all stages of detection, segmentation, and classification show that the integrated CAD system outperforms the latest conventional deep learning methodologies. We conclude that our CAD system could be used to assist radiologists over all stages of detection, segmentation, and classification for diagnosis of breast lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的代容完成签到,获得积分10
1秒前
1秒前
4秒前
传奇3应助绅度采纳,获得10
5秒前
6秒前
100完成签到,获得积分10
8秒前
8秒前
luficy发布了新的文献求助30
8秒前
如你所liao完成签到,获得积分10
8秒前
9秒前
今后应助健忘捕采纳,获得10
9秒前
9秒前
10秒前
Gu发布了新的文献求助10
11秒前
钱罐罐发布了新的文献求助10
11秒前
12秒前
Monica完成签到,获得积分10
12秒前
CCC完成签到,获得积分10
13秒前
14秒前
bkagyin应助爆米花采纳,获得10
16秒前
CCC发布了新的文献求助10
17秒前
李健应助白小白采纳,获得10
17秒前
我是大学霸完成签到,获得积分10
19秒前
所所应助shouyu29采纳,获得10
19秒前
伊伊完成签到,获得积分10
19秒前
生动翠风应助luficy采纳,获得10
20秒前
酷波er应助yxy采纳,获得10
21秒前
思源应助123456采纳,获得10
22秒前
zmnzmnzmn应助钱罐罐采纳,获得10
22秒前
25秒前
CyndiaSUN完成签到,获得积分10
25秒前
大大小完成签到,获得积分10
25秒前
whr完成签到,获得积分10
27秒前
乐于助人大好人完成签到 ,获得积分10
29秒前
拾云完成签到,获得积分10
32秒前
33秒前
35秒前
包容曼易发布了新的文献求助30
37秒前
铠甲勇士发布了新的文献求助10
38秒前
FashionBoy应助Anna采纳,获得10
38秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907817
求助须知:如何正确求助?哪些是违规求助? 3453665
关于积分的说明 10876456
捐赠科研通 3179700
什么是DOI,文献DOI怎么找? 1756582
邀请新用户注册赠送积分活动 849645
科研通“疑难数据库(出版商)”最低求助积分说明 791684