已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CNN-Based Super-Resolution of Hyperspectral Images

高光谱成像 反褶积 计算机科学 端元 图像分辨率 卷积神经网络 模式识别(心理学) 人工智能 卷积(计算机科学) 迭代重建 算法 人工神经网络
作者
P. V. Arun,Krishna Mohan Buddhiraju,Alok Porwal,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (9): 6106-6121 被引量:72
标识
DOI:10.1109/tgrs.2020.2973370
摘要

Single-image super-resolution (SISR) techniques attempt to reconstruct the finer resolution version of a given image from its coarser version. In the SISR of hyperspectral data sets, the simultaneous consideration of spectral bands is crucial for ensuring the spectral fidelity. However, the high spectral resolution of these data sets affects the performance of conventional approaches. This research proposes the design of 3-D convolutional neural network (CNN)-based SISR architectures that can map the spatial-spectral characteristics of hypercubes to a finer spatial resolution. The proposed approaches facilitate the simultaneous optimization of sparse codes and dictionaries with regard to the super-resolution objective. Our main hypothesis is that the consideration of spectral aspects is essential for the spatial enhancement of hyperspectral images. Also, we propose that the regularized deconvolution of a coarser-scale hypercube, using learned 3-D filters, yields the required high-resolution version. Based on these hypotheses, a convolution-deconvolution framework is proposed to super-resolve the hypercubes in parallel with the reconstruction of a set of regularizing features. Novel sparse code optimization sub-networks proposed in this article give better performance than the existing strategies. The endmember similarities and hyperspectral image prior are considered while designing the proposed loss functions. In order to improve the generalizability, a collaborative spectral unmixing strategy is employed to refine the spectral base of the super-resolved result. The spatial-spectral accuracy of the super-resolved hypercubes, in terms of the validity of regularizing features and endmembers, is explored to devise an optimal ensemble strategy. The experiments, over different data sets, confirm better accuracy of the proposed frameworks compared to the prominent approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RWcreator完成签到 ,获得积分10
1秒前
艾路完成签到,获得积分10
2秒前
shego发布了新的文献求助10
3秒前
彬彬完成签到,获得积分10
4秒前
5秒前
大狼完成签到,获得积分10
7秒前
在水一方应助嘿嘿采纳,获得30
8秒前
潘果果完成签到,获得积分10
8秒前
11秒前
岳小龙完成签到 ,获得积分10
12秒前
haly完成签到 ,获得积分10
14秒前
14秒前
852应助风中的丝袜采纳,获得10
15秒前
Ava应助风中的丝袜采纳,获得10
15秒前
大狼发布了新的文献求助10
17秒前
Aipoi1发布了新的文献求助10
17秒前
蓝色的鱼发布了新的文献求助10
18秒前
桐桐应助玛琳卡迪马采纳,获得10
19秒前
Jasper应助玛琳卡迪马采纳,获得10
19秒前
李健应助玛琳卡迪马采纳,获得10
19秒前
Lucas应助玛琳卡迪马采纳,获得10
19秒前
上官若男应助大狼采纳,获得10
20秒前
蓝色的鱼完成签到,获得积分10
23秒前
24秒前
25秒前
赵陌陌发布了新的文献求助10
28秒前
lele完成签到,获得积分10
29秒前
32秒前
32秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
玛琳卡迪马完成签到,获得积分10
34秒前
shego完成签到,获得积分10
35秒前
Forest完成签到,获得积分10
36秒前
顺心牛排完成签到,获得积分10
37秒前
44秒前
黎明完成签到,获得积分10
45秒前
suansuan发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528747
求助须知:如何正确求助?哪些是违规求助? 4618195
关于积分的说明 14562134
捐赠科研通 4557054
什么是DOI,文献DOI怎么找? 2497330
邀请新用户注册赠送积分活动 1477552
关于科研通互助平台的介绍 1448838