Parameter Identification of a Power Loss Model for Vehicle Transmissions Based on Sensitivity Analysis

风阻 灵敏度(控制系统) 功率(物理) 动力传动系统 功率损耗 传输损耗 动力传输 汽车工程 搅动 控制理论(社会学) 计算机科学 传输(电信) 工程类 扭矩 电子工程 电压 电气工程 机械工程 物理 劳动经济学 人工智能 热力学 经济 控制(管理) 电信 量子力学
作者
Zhihong Liu,Stephan Rinderknecht
出处
期刊:SAE International journal of advances and current practices in mobility [SAE International]
卷期号:3 (1): 590-597
标识
DOI:10.4271/2020-01-2244
摘要

As the transmission design directly impacts drive unite operation and power flow to the driveline, the transmission power loss is a critical target in the drivetrain development. The demand of more precise and more efficient power loss prediction has therefore increased significantly, which highlights the need of new methodologies in order to optimize the power loss model for vehicle transmissions. The possible power losses that exist in the power flow path, are gear mesh losses, gear churning losses, gear windage losses, bearing losses, synchronizer losses and sealing losses. Thanks to the decades of research, analytical models are available for the prediction of these component losses, which could deliver power loss distributions and overall efficiency maps of complex transmissions. The aim of this paper is to introduce a methodology to improve the accuracy of a chosen power loss model on a system level. A detailed power loss prediction for a two-speed transmission in an electric vehicle has been performed. The simulated overall power losses and the available experimental results match well. However, since many assumptions are made in the analytical modelling process, there are still deviations between the predicted and the measured results. In order to reduce the deviations, all uncertain parameters are firstly analyzed based on the parameter sensitivity analysis method FAST that allows determining the influential uncertain parameters. The sensitivities of those influential parameters are locally defined at all operating regions, by which the sensitive operating areas of all influential uncertain parameters to the overall power losses could be defined. The identification of these parameters at their sensitive regions prevents the unnecessary interference with other uncertain parameters at the identification process. With the help of identified parameters, a better proximity between the simulated and measured results is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心寒松发布了新的文献求助150
1秒前
小草发布了新的文献求助10
3秒前
4秒前
飞快的雅青完成签到 ,获得积分10
4秒前
直率的钢铁侠完成签到,获得积分10
6秒前
5555发布了新的文献求助10
8秒前
9秒前
11秒前
Lyuhng+1完成签到 ,获得积分10
13秒前
17秒前
zxx发布了新的文献求助10
18秒前
23秒前
静影沉璧发布了新的文献求助10
23秒前
冲冲冲发布了新的文献求助10
28秒前
29秒前
充电宝应助zwl采纳,获得10
30秒前
32秒前
grzzz发布了新的文献求助10
35秒前
充电宝应助成就莞采纳,获得10
37秒前
37秒前
37秒前
zxx完成签到,获得积分10
38秒前
Mason完成签到,获得积分10
40秒前
41秒前
静影沉璧完成签到,获得积分10
42秒前
zwl发布了新的文献求助10
42秒前
LaInh完成签到,获得积分10
43秒前
roachy发布了新的文献求助10
43秒前
44秒前
45秒前
随风完成签到 ,获得积分10
47秒前
小巧凡霜发布了新的文献求助10
48秒前
51秒前
ZZ发布了新的文献求助10
52秒前
52秒前
蒋时晏完成签到,获得积分0
54秒前
roachy完成签到,获得积分10
57秒前
57秒前
58秒前
小四喜发布了新的文献求助10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781253
求助须知:如何正确求助?哪些是违规求助? 3326745
关于积分的说明 10228256
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751