A Clustering Algorithm via Density Perception and Hierarchical Aggregation Based on Urban Multimodal Big Data for Identifying and Analyzing Categories of Poverty-Stricken Households in China

数据库扫描 聚类分析 贫穷 计算机科学 中国 层次聚类 大数据 空格(标点符号) 资源(消歧) 数据挖掘 噪音(视频) 机器学习 数据科学 人工智能 地理 经济增长 经济 CURE数据聚类算法 相关聚类 考古 图像(数学) 操作系统 计算机网络
作者
Hui Liu,Yang Liu,Ran Zhang,Xia Wu
出处
期刊:Scientific Programming [Hindawi Publishing Corporation]
卷期号:2021: 1-13 被引量:4
标识
DOI:10.1155/2021/6692975
摘要

Nowadays, urban multimodal big data are freely available to the public due to the growing number of cities, which plays a critical role in many fields such as transportation, education, medical treatment, and land resource management. The successful completion of poverty-relief work can greatly improve the quality of people’s life and ensure the sustainable development of the society. Poverty is a severe challenge for human society. It is of great significance to apply machine learning to mine different categories of poverty-stricken households and further provide decision support for poverty alleviation. Traditional poverty alleviation methods need to consume a lot of manpower, material resources, and financial resources. Based on the density-based spatial clustering of applications with noise (DBSCAN), this paper designs the hierarchical DBSCAN clustering algorithm to identify and analyze the categories of poverty-stricken households in China. First, the proposed method adjusts the neighborhood radius dynamically for dividing the data space into several initial clusters with different densities. Then, neighbor clusters are identified by the border and inner distances constantly and aggregated recursively to form new clusters. Based on the idea of division and aggregation, the proposed method can recognize clusters of different forms and deal with noises effectively in the data space with imbalanced density distribution. The experiments indicate that the method has the ideal performance of clustering, which identifies the commonness and difference in characteristics of poverty-stricken households reasonably. In terms of the specific indicator “Accuracy,” the accuracy increases by 2.3% compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nakjeong完成签到 ,获得积分10
刚刚
丘比特应助一个千年猪妖采纳,获得10
1秒前
eeeee发布了新的文献求助10
1秒前
Hello应助哈哈哈哈采纳,获得10
1秒前
2秒前
hiipaige发布了新的文献求助30
2秒前
4秒前
5秒前
牛老大发布了新的文献求助10
5秒前
跳跃毒娘发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
12秒前
南风发布了新的文献求助10
12秒前
催催催发布了新的文献求助10
13秒前
小可爱发布了新的文献求助10
13秒前
15秒前
我是老大应助小丸子采纳,获得10
15秒前
16秒前
在水一方应助刘叶采纳,获得10
16秒前
斯文败类应助hiipaige采纳,获得10
18秒前
18秒前
哈哈哈哈发布了新的文献求助10
19秒前
12458发布了新的文献求助10
20秒前
希望天下0贩的0应助xsc采纳,获得10
20秒前
催催催完成签到,获得积分10
21秒前
jin发布了新的文献求助10
23秒前
南风完成签到,获得积分10
23秒前
24秒前
24秒前
to高坚果发布了新的文献求助10
24秒前
26秒前
科研通AI5应助碎冰蓝采纳,获得10
27秒前
方子关注了科研通微信公众号
27秒前
荧荧荧完成签到,获得积分20
27秒前
青树柠檬完成签到 ,获得积分10
29秒前
学学术术小小白白完成签到,获得积分10
30秒前
yissl发布了新的文献求助10
30秒前
黄豆发布了新的文献求助10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802431
求助须知:如何正确求助?哪些是违规求助? 3348058
关于积分的说明 10336202
捐赠科研通 3063960
什么是DOI,文献DOI怎么找? 1682338
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997