STone Episode Prediction: Development and validation of the prediction nomogram for urolithiasis

列线图 医学 逻辑回归 接收机工作特性 曲线下面积 金标准(测试) 糖尿病 泌尿科 内科学 内分泌学
作者
Kazutaka Okita,Shingo Hatakeyama,Atsushi Imai,Toshikazu Tanaka,Itsuto Hamano,Teppei Okamoto,Yuki Tobisawa,Tohru Yoneyama,Hayato Yamamoto,Takahiro Yoneyama,Yasuhiro Hashimoto,Shigeyuki Nakaji,Tadashi Suzuki,Chikara Οhyama
出处
期刊:International Journal of Urology [Wiley]
卷期号:27 (4): 344-349 被引量:5
标识
DOI:10.1111/iju.14203
摘要

Objectives To develop and validate a nomogram predicting the occurrence of a stone episode, given the lack of such predicting risk tools for urolithiasis. Methods We retrospectively analyzed 1305 patients with urolithiasis and 2800 community‐dwelling individuals who underwent a comprehensive health survey. The STone Episode Prediction nomogram was created based on data from the medical records of 600 patients with urolithiasis and 1300 controls, and was validated using a different population of 705 patients with urolithiasis and 1500 controls. Logistic regression analysis was used to construct a model to predict the potential candidate for a stone episode. The predictive ability of the model was evaluated using the results of the area under the receiver operating characteristics curve (area under the curve). Results Age, sex, diabetes mellitus, renal function, serum albumin, and serum uric acid were found to be significantly associated with urolithiasis in the training set and were included in the STone Episode Prediction nomogram. The optimal cut‐off value for the probability of a stone episode using the nomogram was >28% with a sensitivity of 79%, a specificity of 76%, and area under the curve of 0.860. In the validation test, area under the curve for the detection of urolithiasis was 0.815 with a sensitivity of 81% and specificity of 63%. Conclusions Herein, we developed and validated the STone Episode Prediction nomogram that can predict a potential candidate for an episode of urolithiasis. This nomogram might be beneficial for the first step in stone screening in individuals with lifestyle‐related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
的法国队完成签到,获得积分10
5秒前
Hello应助蒲团了道真采纳,获得20
9秒前
Max完成签到,获得积分10
10秒前
15秒前
17秒前
小周完成签到,获得积分10
20秒前
YamDaamCaa应助机灵柚子采纳,获得200
21秒前
JL完成签到,获得积分10
21秒前
俞若枫完成签到,获得积分10
21秒前
涓涓溪水发布了新的文献求助10
21秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得30
22秒前
积极从蕾应助科研通管家采纳,获得10
22秒前
ED应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
23秒前
COSMAO应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
COSMAO应助科研通管家采纳,获得20
23秒前
ED应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
24秒前
我不知道该叫啥完成签到,获得积分10
27秒前
明理的山楂完成签到,获得积分20
27秒前
常佳仟完成签到,获得积分10
27秒前
酷波er应助吃草采纳,获得30
28秒前
酷波er应助娜娜采纳,获得10
30秒前
Stove完成签到,获得积分10
30秒前
云峤发布了新的文献求助30
31秒前
32秒前
32秒前
格兰德法泽尔完成签到,获得积分10
33秒前
东坡完成签到,获得积分10
33秒前
鲁滨逊发布了新的文献求助10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132722
求助须知:如何正确求助?哪些是违规求助? 3669417
关于积分的说明 11603985
捐赠科研通 3366323
什么是DOI,文献DOI怎么找? 1849471
邀请新用户注册赠送积分活动 913093
科研通“疑难数据库(出版商)”最低求助积分说明 828438