Multiple improved residual networks for medical image super-resolution

残余物 计算机科学 卷积神经网络 人工智能 水准点(测量) 深度学习 块(置换群论) 模式识别(心理学) 图像(数学) 特征(语言学) 随机梯度下降算法 图像分辨率 人工神经网络 算法 计算机视觉 数学 几何学 哲学 语言学 大地测量学 地理
作者
Defu Qiu,Lixin Zheng,Jianqing Zhu,Detian Huang
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:116: 200-208 被引量:64
标识
DOI:10.1016/j.future.2020.11.001
摘要

The rapid development of deep learning has resulted in great breakthroughs in image super-resolution reconstruction technology in medical imaging modalities. The application of artificial intelligence to medical image processing has been the focus of scholars both domestically and internationally in recent years. Due to the fast super-resolution convolutional neural network (FSRCNN) algorithm has fewer convolutional layers and lacks the correlation between the feature information of adjacent convolutional layers, it is difficult to be used to extract deep information of an image, and the super-resolution rate of the image reconstruction effect is not good. To solve this problem, we propose the multiple improved residual network (MIRN) super-resolution reconstruction method. First, MIRN designs the residual blocks connected by multi-level skips to build multiple improved residual block (MIRB) modules. A deep residual network with multi-level skip connection is used to solve the lack of correlation between the characteristic information of adjacent convolutional layers. Then, the stochastic gradient descent method (SGD) is used to train a deep residual network connected by multi-level jumpers with an adjustable learning rate strategy to obtain a super-resolution reconstruction model of the network. Finally, the low-resolution image is input in the MIRN super-resolution reconstruction model, and the residual block obtains the predicted residual eigenvalues and then combines the residual image and the low-resolution image into a high-resolution image. Most quantitative and qualitative evaluations on benchmark datasets demonstrate that the proposed model can better reconstruct the details and textures of images and avoid the over-smoothing of medical images after iteration, and the performance of the proposed algorithm is revealed to be better than that of existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂吃五碗饭完成签到,获得积分10
1秒前
shenwei完成签到 ,获得积分10
2秒前
3秒前
3秒前
高高诗柳完成签到 ,获得积分10
3秒前
4秒前
linkezou完成签到,获得积分10
4秒前
公西钧完成签到,获得积分10
4秒前
zong240221完成签到 ,获得积分10
4秒前
幸福妙柏完成签到 ,获得积分10
6秒前
成就的南霜完成签到,获得积分10
6秒前
zzzyyyuuu完成签到 ,获得积分10
6秒前
11222浅发布了新的文献求助10
8秒前
美满的金连完成签到 ,获得积分10
8秒前
舒心靖琪完成签到 ,获得积分10
8秒前
CUREME完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
hm完成签到,获得积分10
11秒前
13秒前
zhuxd发布了新的文献求助10
16秒前
胡图完成签到,获得积分10
16秒前
Ethan完成签到,获得积分10
17秒前
巧克力完成签到 ,获得积分10
21秒前
sw完成签到,获得积分10
22秒前
李琛完成签到,获得积分10
23秒前
隐形曼青应助xun采纳,获得10
23秒前
zhuxd发布了新的文献求助10
29秒前
零四零零柒贰完成签到 ,获得积分10
30秒前
浅唱完成签到,获得积分10
30秒前
semiaa完成签到,获得积分10
30秒前
31秒前
Wangyn关注了科研通微信公众号
32秒前
安子完成签到 ,获得积分10
33秒前
超级玛丽完成签到 ,获得积分10
36秒前
搜集达人应助刘燕采纳,获得10
36秒前
啵啵啵小太阳完成签到,获得积分10
37秒前
37秒前
yuzhanli发布了新的文献求助10
38秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801112
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330165
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807519
科研通“疑难数据库(出版商)”最低求助积分说明 763726