亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SNF–CVAE: Computational method to predict drug–disease interactions using similarity network fusion and collective variational autoencoder

药物重新定位 机器学习 人工智能 计算机科学 稳健性(进化) 相似性(几何) 自编码 药物开发 药物发现 药品 数据挖掘 计算生物学 人工神经网络 生物信息学 生物 基因 图像(数学) 药理学 生物化学
作者
Tamer N. Jarada,Jon Rokne,Reda Alhajj
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:212: 106585-106585 被引量:38
标识
DOI:10.1016/j.knosys.2020.106585
摘要

Drug repositioning is an emerging approach to identify novel therapeutic potentials for approved drugs and discover therapies for previously untreatable diseases. Drug repositioning has also attracted considerable attention in the pharmaceutical industry due to its time and cost efficiency in the drug development process compared to the traditional de novo drug discovery process. Recent advances in genomics, the tremendous growth of large-scale publicly available data, the availability of high-performance computing capabilities, along with the rise of machine learning, have further motivated the development of computational drug repositioning approaches. Investigating the relationship between different biomedical entities (e.g., drugs, diseases, genes) is one vital part of most recent studies in the drug repositioning field. Drug–disease interaction (R-DI) prediction is another main issue in drug repositioning research. Combining these relationships and interactions when introducing computational methods to identify novel drug–disease interactions with high accuracy is very challenging. In this study, we propose a robust approach, SNF–CVAE, for predicting novel drug–disease interactions using drug-related similarity information and known drug–disease interactions. SNF–CVAE integrates similarity measures, similarity selection, similarity network fusion (SNF), and collective variational autoencoder (CVAE) to conduct a non-linear analysis and improve the drug–disease interaction prediction accuracy. We evaluated the robustness of SNF–CVAE using different information models, drug similarity calculation measures, and drug similarity information. Moreover, we compared SNF–CVAE performance with four state-of-the-art machine learning models. SNF–CVAE achieved outstanding performance in stratified 5-fold cross-validation (Prec = 0.902, Rec = 0.883, F1 = 0.893, AUC-ROC = 0.958, and AUC-PR=0.970). Furthermore, we showed the efficiency of SNF–CVAE in predicting novel drug–disease interactions by validating the top-ranked interactions against pharmaceutical indications and clinical trial studies, which resulted in substantial pieces of evidence for almost all of RDIs predicted by our proposed model. To further demonstrate the reliability and robustness of SNF–CVAE, we conducted two case studies on the top predicted drug candidates for potentially treating Alzheimer’s disease and Juvenile rheumatoid arthritis, which were successfully validated against clinical trials and published studies. In conclusion, we strongly believe that computational drug repurposing research could significantly benefit from integrating similarity measures and deep learning models to predict novel drug–disease interactions in heterogeneous networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助柏特瑞采纳,获得10
4秒前
JamesPei应助嗨害害采纳,获得10
5秒前
嗨害害完成签到,获得积分20
12秒前
18秒前
小花排草应助科研通管家采纳,获得30
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
柏特瑞发布了新的文献求助10
23秒前
激情的从云完成签到,获得积分10
30秒前
42秒前
48秒前
Yixin发布了新的文献求助10
49秒前
1分钟前
啦啦发布了新的文献求助30
1分钟前
linnya发布了新的文献求助10
1分钟前
满意的晓啸完成签到,获得积分10
1分钟前
1分钟前
Yixin完成签到,获得积分10
1分钟前
goldfish发布了新的文献求助10
1分钟前
1分钟前
miaolingcool发布了新的文献求助10
1分钟前
fantab01发布了新的文献求助10
1分钟前
1分钟前
mob发布了新的文献求助10
1分钟前
科研通AI5应助fantab01采纳,获得10
1分钟前
2分钟前
2分钟前
mob完成签到,获得积分10
2分钟前
深情安青应助可靠的寒风采纳,获得10
2分钟前
lwm不想看文献完成签到 ,获得积分10
3分钟前
烟花应助houhoujiang采纳,获得10
3分钟前
StayGolDay完成签到,获得积分10
3分钟前
3分钟前
丘比特应助何流畅采纳,获得10
3分钟前
houhoujiang发布了新的文献求助10
3分钟前
3分钟前
何流畅发布了新的文献求助10
3分钟前
linnya发布了新的文献求助10
4分钟前
小花排草应助科研通管家采纳,获得30
4分钟前
jyy关闭了jyy文献求助
4分钟前
houhoujiang完成签到,获得积分10
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162007
求助须知:如何正确求助?哪些是违规求助? 3697548
关于积分的说明 11674952
捐赠科研通 3388427
什么是DOI,文献DOI怎么找? 1858131
邀请新用户注册赠送积分活动 918831
科研通“疑难数据库(出版商)”最低求助积分说明 831695