Accumulating advantages: A new conceptualization of rapid multiple choice.

累加器(密码学) 液压蓄能器 概念化 二进制数 计算机科学 水准点(测量) 人工智能 算法 数学 算术 大地测量学 热力学 物理 地理
作者
Don van Ravenzwaaij,Scott Brown,A. A. J. Marley,Andrew Heathcote
出处
期刊:Psychological Review [American Psychological Association]
卷期号:127 (2): 186-215 被引量:39
标识
DOI:10.1037/rev0000166
摘要

Independent racing evidence-accumulator models have proven fruitful in advancing understanding of rapid decisions, mainly in the case of binary choice, where they can be relatively easily estimated and are known to account for a range of benchmark phenomena. Typically, such models assume a one-to-one mapping between accumulators and responses. We explore an alternative independent-race framework where more than one accumulator can be associated with each response, and where a response is triggered when a sufficient number of accumulators associated with that response reach their thresholds. Each accumulator is primarily driven by the difference in evidence supporting one versus another response (i.e., that response's "advantage"), with secondary inputs corresponding to the total evidence for both responses and a constant term. We use Brown and Heathcote's (2008) linear ballistic accumulator (LBA) to instantiate the framework in a mathematically tractable measurement model (i.e., a model whose parameters can be successfully recovered from data). We show this "advantage LBA" model provides a detailed quantitative account of a variety of benchmark binary and multiple choice phenomena that traditional independent accumulator models struggle with; in binary choice the effects of additive versus multiplicative changes to input values, and in multiple choice the effects of manipulations of the strength of lure (i.e., nontarget) stimuli and Hick's law. We conclude that the advantage LBA provides a tractable new avenue for understanding the dynamics of decisions among multiple choices. (PsycINFO Database Record (c) 2020 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
鳗鱼如松完成签到,获得积分10
2秒前
汉堡包应助武雨寒采纳,获得10
2秒前
jiang完成签到,获得积分20
3秒前
3秒前
4秒前
答题不卡发布了新的文献求助10
6秒前
善学以致用应助旦皋采纳,获得10
6秒前
Jasper应助shunli顺利采纳,获得10
7秒前
8秒前
8秒前
红糖发糕完成签到 ,获得积分10
9秒前
10秒前
爱格儿发布了新的文献求助10
11秒前
传奇3应助啊啊啊啊轩采纳,获得10
12秒前
科研通AI6.1应助cloud采纳,获得10
13秒前
13秒前
焉知非褔发布了新的文献求助10
14秒前
lucky完成签到,获得积分10
14秒前
14秒前
yznfly应助喝杯水再走采纳,获得50
14秒前
量子星尘发布了新的文献求助30
14秒前
16秒前
行路人发布了新的文献求助10
16秒前
卡卡完成签到,获得积分10
16秒前
宝玉完成签到 ,获得积分10
16秒前
17秒前
45465465456发布了新的文献求助10
18秒前
领导范儿应助武雨寒采纳,获得10
19秒前
19秒前
111发布了新的文献求助10
20秒前
Lycerdoctor发布了新的文献求助10
20秒前
20秒前
bkagyin应助45465465456采纳,获得10
23秒前
兴奋烨华完成签到 ,获得积分10
23秒前
Soho发布了新的文献求助10
23秒前
24秒前
Criminology34应助ADP采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736699
求助须知:如何正确求助?哪些是违规求助? 5367371
关于积分的说明 15333576
捐赠科研通 4880461
什么是DOI,文献DOI怎么找? 2622875
邀请新用户注册赠送积分活动 1571758
关于科研通互助平台的介绍 1528582