Network topology and machine learning analyses reveal microstructural white matter changes underlying Chinese medicine Dengzhan Shengmai treatment on patients with vascular cognitive impairment

白质 磁共振弥散成像 认知 安慰剂 神经心理学 痴呆 医学 精神分裂症(面向对象编程) 血管性痴呆 神经影像学 随机对照试验 内科学 磁共振成像 精神科 疾病 病理 放射科 替代医学
作者
Hui Lu,Junying Zhang,Ying Liang,Yanan Qiao,Caishui Yang,Xuwen He,Wenxiao Wang,Shaokun Zhao,Dongfeng Wei,He Li,Weidong Cheng,Zhanjun Zhang
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:156: 104773-104773 被引量:28
标识
DOI:10.1016/j.phrs.2020.104773
摘要

With the increasing incidence of cerebrovascular diseases and dementia, considerable efforts have been made to develop effective treatments on vascular cognitive impairment (VCI), among which accumulating practice-based evidence has shown great potential of the traditional Chinese medicine (TCM). Current randomized double-blind controlled trial has been designed to evaluate the 6-month treatment effects of Dengzhan Shengmai (DZSM) capsules, one TCM herbal preparations on VCI, and to explore the underlying neural mechanisms with graph theory-based analysis and machine learning method based on diffusion tensor imaging (DTI) data. A total of 82 VCI patients were recruited and randomly assigned to drug (45 with DZSM) and placebo (37 with placebo) groups, and neuropsychological and neuroimaging data were acquired at baseline and after 6-month treatment. After treatment, compared to the placebo group, the drug groups showed significantly improved performance in Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-cog) score (p < 0.001) and the other cognitive domains. And with the reconstruction of white matter structural network, there were more streamlines connecting the left thalamus and right hippocampus in the drug groups (p < 0.001 uncorrected), with decreasing nodal efficiency of the right olfactory associated with slower decline in the general cognition (r = −0.364, p = 0.048). Moreover, support vector machine classification analyses revealed significant white matter network alterations after treatment in the drug groups (accuracy of baseline vs. 6-month later, 68.18 %). Taking together, the present study showed significant efficacy of DZSM treatment on VCI, which might result from white matter microstructure alterations and the topological changes in brain structural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜于飞薇发布了新的文献求助30
1秒前
鲁滨逊发布了新的文献求助10
1秒前
饱满以松发布了新的文献求助10
2秒前
充电宝应助小静采纳,获得30
3秒前
无私夏之完成签到,获得积分10
3秒前
鲜于飞薇完成签到,获得积分10
10秒前
bigger.b发布了新的文献求助100
11秒前
15秒前
小森发布了新的文献求助10
18秒前
Menand发布了新的文献求助10
20秒前
20秒前
单薄烤鸡完成签到 ,获得积分10
24秒前
爆米花应助咎如天采纳,获得10
24秒前
24秒前
Akim应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
王春梅应助科研通管家采纳,获得10
26秒前
传奇3应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得30
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
华仔应助科研通管家采纳,获得10
27秒前
xzn1123应助科研通管家采纳,获得20
27秒前
婆婆丁应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
27秒前
小柯完成签到,获得积分10
27秒前
暖若安阳完成签到,获得积分10
28秒前
李爱国应助木风2023采纳,获得10
28秒前
木子李发布了新的文献求助10
28秒前
hxm完成签到,获得积分10
29秒前
30秒前
30秒前
bigger.b完成签到,获得积分10
32秒前
35秒前
36秒前
常温发布了新的文献求助10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158278
求助须知:如何正确求助?哪些是违规求助? 3693912
关于积分的说明 11665122
捐赠科研通 3385665
什么是DOI,文献DOI怎么找? 1857004
邀请新用户注册赠送积分活动 918158
科研通“疑难数据库(出版商)”最低求助积分说明 831354