Network topology and machine learning analyses reveal microstructural white matter changes underlying Chinese medicine Dengzhan Shengmai treatment on patients with vascular cognitive impairment

白质 磁共振弥散成像 认知 安慰剂 神经心理学 痴呆 医学 精神分裂症(面向对象编程) 血管性痴呆 神经影像学 随机对照试验 内科学 磁共振成像 精神科 疾病 病理 放射科 替代医学
作者
Hui Lu,Junying Zhang,Ying Liang,Yanan Qiao,Caishui Yang,Xuwen He,Wenxiao Wang,Shaokun Zhao,Dongfeng Wei,He Li,Weidong Cheng,Zhanjun Zhang
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:156: 104773-104773 被引量:27
标识
DOI:10.1016/j.phrs.2020.104773
摘要

With the increasing incidence of cerebrovascular diseases and dementia, considerable efforts have been made to develop effective treatments on vascular cognitive impairment (VCI), among which accumulating practice-based evidence has shown great potential of the traditional Chinese medicine (TCM). Current randomized double-blind controlled trial has been designed to evaluate the 6-month treatment effects of Dengzhan Shengmai (DZSM) capsules, one TCM herbal preparations on VCI, and to explore the underlying neural mechanisms with graph theory-based analysis and machine learning method based on diffusion tensor imaging (DTI) data. A total of 82 VCI patients were recruited and randomly assigned to drug (45 with DZSM) and placebo (37 with placebo) groups, and neuropsychological and neuroimaging data were acquired at baseline and after 6-month treatment. After treatment, compared to the placebo group, the drug groups showed significantly improved performance in Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-cog) score (p < 0.001) and the other cognitive domains. And with the reconstruction of white matter structural network, there were more streamlines connecting the left thalamus and right hippocampus in the drug groups (p < 0.001 uncorrected), with decreasing nodal efficiency of the right olfactory associated with slower decline in the general cognition (r = −0.364, p = 0.048). Moreover, support vector machine classification analyses revealed significant white matter network alterations after treatment in the drug groups (accuracy of baseline vs. 6-month later, 68.18 %). Taking together, the present study showed significant efficacy of DZSM treatment on VCI, which might result from white matter microstructure alterations and the topological changes in brain structural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
upsoar发布了新的文献求助10
1秒前
司藤完成签到 ,获得积分10
1秒前
TRY发布了新的文献求助10
2秒前
3秒前
jgpiao发布了新的文献求助10
3秒前
aaa发布了新的文献求助10
5秒前
6秒前
77完成签到,获得积分10
6秒前
6秒前
占孤风完成签到,获得积分10
9秒前
10秒前
伍六七发布了新的文献求助10
10秒前
13秒前
13秒前
jj158完成签到,获得积分10
15秒前
15秒前
奋斗的大米完成签到,获得积分10
16秒前
Hello应助www采纳,获得10
17秒前
illusion2019应助lizhiqian2024采纳,获得10
17秒前
18秒前
科研通AI2S应助cldg采纳,获得10
18秒前
小丫头发布了新的文献求助10
18秒前
Lucas应助快来和姐妹玩采纳,获得10
19秒前
李卓发布了新的文献求助10
19秒前
所所应助jgpiao采纳,获得10
19秒前
丘比特应助liu采纳,获得10
20秒前
无花果应助陈陈陈陈采纳,获得10
20秒前
听雨潇潇发布了新的文献求助10
21秒前
Green发布了新的文献求助10
22秒前
kingwill应助Sulin采纳,获得20
22秒前
高震博完成签到 ,获得积分10
24秒前
Akim应助谷粱靖采纳,获得10
24秒前
恩物来说完成签到 ,获得积分10
25秒前
26秒前
28秒前
你以为你是谁完成签到,获得积分10
29秒前
29秒前
29秒前
李健的小迷弟应助hugeng采纳,获得10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792