SSRNet: Scalable 3D Surface Reconstruction Network

计算机科学 可扩展性 点云 八叉树 曲面重建 过度拟合 管道(软件) 人工智能 深度学习 过程(计算) 曲面(拓扑) 分布式计算 人工神经网络 数据库 几何学 数学 程序设计语言 操作系统
作者
Ganzhangqin Yuan,Qiancheng Fu,Zhenxing Mi,Yiming Luo,Wenbing Tao
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:29 (12): 4906-4919 被引量:11
标识
DOI:10.1109/tvcg.2022.3193406
摘要

Learning-based surface reconstruction methods have received considerable attention in recent years due to their excellent expressiveness. However, existing learning-based methods lack scalability in processing large-scale point clouds. This paper proposes a novel scalable learning-based 3D surface reconstruction method based on octree, called SSRNet. SSRNet works in a scalable reconstruction pipeline, which divides oriented point clouds into different local parts and then processes them in parallel. Accommodating this scalable design pattern, SSRNet constructs local geometric features for octree vertices. Such features comprise the relation between the vertices and the implicit surface, ensuring geometric perception. Focusing on local geometric information also enables the network to avoid the overfitting problem and generalize well on different datasets. Finally, as a learning-based method, SSRNet can process large-scale point clouds in a short time. And to further solve the efficiency problem, we provide a lightweight and efficient version that is about five times faster while maintaining reconstruction performance. Experiments show that our methods achieve state-of-the-art performance with outstanding efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
5秒前
慕青应助jias采纳,获得10
6秒前
忧虑的南莲完成签到,获得积分10
7秒前
Tycoon发布了新的文献求助10
7秒前
小杭76应助lyman采纳,获得10
8秒前
CipherSage应助Andy采纳,获得10
9秒前
灵巧的听枫完成签到,获得积分10
9秒前
滴滴发布了新的文献求助10
10秒前
xfYan完成签到,获得积分10
10秒前
heiye发布了新的文献求助10
11秒前
11秒前
超级的鞅发布了新的文献求助10
13秒前
15秒前
16秒前
16秒前
lele发布了新的文献求助10
17秒前
大个应助S羊羊采纳,获得10
18秒前
19秒前
liars完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
深情安青应助jias采纳,获得10
21秒前
21秒前
Andy发布了新的文献求助10
22秒前
24秒前
辛勤芷容发布了新的文献求助10
28秒前
28秒前
30秒前
华仔应助陈彦早采纳,获得10
30秒前
笑点低的紫完成签到,获得积分10
32秒前
aqua_xin完成签到,获得积分0
32秒前
大福完成签到,获得积分10
32秒前
33秒前
深情安青应助渴望者采纳,获得10
34秒前
xfYan发布了新的文献求助10
37秒前
子焱完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164