Simulating urban expansion by incorporating an integrated gravitational field model into a demand-driven random forest-cellular automata model

城市群 细胞自动机 领域(数学) 一致性(知识库) 北京 计算机科学 变量(数学) 城市规划 计量经济学 地理 经济地理学 人工智能 数学 土木工程 工程类 数学分析 考古 纯数学 中国
作者
Jianjun Lv,Yifan Wang,Xun Liang,Yao Yao,Teng Ma,Qingfeng Guan
出处
期刊:Cities [Elsevier BV]
卷期号:109: 103044-103044 被引量:68
标识
DOI:10.1016/j.cities.2020.103044
摘要

Interactions among cities are playing an increasingly significant role in driving urban expansion in urban agglomerations. Many studies have combined the gravitational field model (GFM) with the cellular automata (CA) model to analyze the impact of urban spatial interaction on urban agglomerations. However, previous studies have used threshold-based CA models, which cannot ensure that the amount of simulated urban land (an important control variable) of the proposed CA model and contrasting CA models are consistent during experiments. In addition, previous studies have applied only one or two indicators to represent spatial interactions among cities, which cannot fully reflect the urban spatial field intensity levels within city clusters. Furthermore, previous studies have tended to apply simple mining methods (e.g., logistic regression) to mine the transition rules of CA models. These methods cannot explore the complex relationships between urban growth and driving factors (including urban spatial field intensity). This study proposes an integrated gravitational field model (IGFM) by combining comprehensive economic indicators, time-cost distance and information flow intensity to quantify urban spatial field intensity. The random forest (RF) algorithm, a machine learning method with a strong fitting ability, is adopted to mine the complex transition rules of a demand-driven CA model, which the previously developed simple mining methods are unable to accomplish. The use of demand-driven CA ensures the consistency of urban demand between contrasting CAs, which can help generate more rigorous results. The proposed IGFM-RF-CA is applied to simulate urban growth in the Beijing-Tianjin-Hebei urban agglomeration (BTH). The IGFM-RF-CA can achieve high simulation accuracy not only for a whole area but also for most subdistricts, especially in relatively developed cities. We also find that the intensity of information flow in the simulation can significantly improve the performance of the CA model, particularly in small cities located along the periphery of the BTH, which are characterized by relatively low economic development but high Internet popularity. We suggest that some small cities (e.g., Zhangjiakou and Chengde) can promote their development by increasing their Internet popularity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨杨发布了新的文献求助10
1秒前
4秒前
5秒前
健忘的听南完成签到 ,获得积分10
5秒前
5秒前
保持理智完成签到,获得积分10
7秒前
英俊的铭应助火丙子采纳,获得10
8秒前
MAXXIN发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助50
9秒前
圆锥香蕉举报su求助涉嫌违规
9秒前
天天向上应助jjj采纳,获得1250
9秒前
wanjingwan完成签到 ,获得积分10
13秒前
13秒前
赵赛赛应助海的呼唤采纳,获得10
14秒前
15秒前
超帅的冬瓜完成签到,获得积分10
16秒前
袁钰琳完成签到 ,获得积分10
17秒前
MAXXIN完成签到,获得积分10
17秒前
Akim应助of采纳,获得10
18秒前
wangfugui发布了新的文献求助10
18秒前
yls完成签到,获得积分10
19秒前
bkagyin应助LL采纳,获得10
19秒前
20秒前
21秒前
感动的仙人掌完成签到 ,获得积分10
21秒前
22秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
肉松发布了新的文献求助10
28秒前
今后应助小巧的莫言采纳,获得10
29秒前
maolizi发布了新的文献求助10
29秒前
wangfugui完成签到,获得积分10
31秒前
隐形曼青应助Coco采纳,获得10
31秒前
四月完成签到 ,获得积分10
33秒前
张宁关注了科研通微信公众号
33秒前
包包琪完成签到 ,获得积分10
34秒前
34秒前
海的呼唤完成签到,获得积分10
34秒前
跳跃的自行车完成签到,获得积分20
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4245107
求助须知:如何正确求助?哪些是违规求助? 3778465
关于积分的说明 11862645
捐赠科研通 3432399
什么是DOI,文献DOI怎么找? 1883599
邀请新用户注册赠送积分活动 935361
科研通“疑难数据库(出版商)”最低求助积分说明 841828