材料科学
锂(药物)
固态
化学工程
金属锂
电子
黄铁矿
金属
过渡金属
催化作用
阴极
无机化学
电极
纳米技术
化学
阳极
冶金
物理化学
内分泌学
量子力学
工程类
医学
生物化学
物理
作者
Hongli Wan,Gaozhan Liu,Yanle Li,Wei Weng,Jean Pierre Mwizerwa,Ziqi Tian,Liang Chen,Xiayin Yao
出处
期刊:ACS Nano
[American Chemical Society]
日期:2019-08-09
卷期号:13 (8): 9551-9560
被引量:67
标识
DOI:10.1021/acsnano.9b04538
摘要
All-solid-state batteries can enable reversible four lithium ion storage for pyrite (FeS2) at a cutoff voltage of 1.0–3.0 V. However, strain/stress concentration generating electrode pulverization and sluggish electrochemical reaction of lithium sulfide and sulfur will affect the long cycling stability of the battery. Through experiments and density functional theory (DFT) calculations, it is proved that nanostructure engineering and electronic conduction improvement with introduction of catalytic cobalt can effectively improve the electrochemical activity of FeS2. The optimized loose structured Co0.1Fe0.9S2 based all-solid-state lithium batteries show reversible capacities of 860.5, 797.7, 685.8, and 561.8 mAh g–1 after five cycles at 100, 200, 500, and 1000 mA g–1, respectively, and a stable capacity of 543.5 mAh g–1 can be maintained after cycling at a current density of 500 mA g–1 for 100 cycles. Ex situ TEM and Raman results reveal that, after the first cycle, the reversible reaction 2Li2S + Fe ↔ FeSy + (2 – y)S + 4Li+ + 4e– proceeds from the following cycles onward, while nanocrystalline mackinawite FeS, Fe(III)-containing mackinawite FeS, and Fe3S4 are generated after the first discharge–charge process. This work provides a facile method for improving the electrochemical performance for multi-electron reaction mechanism based all-solid-state lithium batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI