Learned large field-of-view imaging with thin-plate optics

计算机科学 视野 光学 图像质量 薄透镜 针孔(光学) 物理 计算机视觉 人工智能 景深 镜头(地质) 图像(数学)
作者
Yifan Peng,Qilin Sun,Xiong Dun,Gordon Wetzstein,Wolfgang Heidrich,Felix Heide
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:38 (6): 1-14 被引量:101
标识
DOI:10.1145/3355089.3356526
摘要

Typical camera optics consist of a system of individual elements that are designed to compensate for the aberrations of a single lens. Recent computational cameras shift some of this correction task from the optics to post-capture processing, reducing the imaging optics to only a few optical elements. However, these systems only achieve reasonable image quality by limiting the field of view (FOV) to a few degrees - effectively ignoring severe off-axis aberrations with blur sizes of multiple hundred pixels. In this paper, we propose a lens design and learned reconstruction architecture that lift this limitation and provide an order of magnitude increase in field of view using only a single thin-plate lens element. Specifically, we design a lens to produce spatially shift-invariant point spread functions, over the full FOV, that are tailored to the proposed reconstruction architecture. We achieve this with a mixture PSF, consisting of a peak and and a low-pass component, which provides residual contrast instead of a small spot size as in traditional lens designs. To perform the reconstruction, we train a deep network on captured data from a display lab setup, eliminating the need for manual acquisition of training data in the field. We assess the proposed method in simulation and experimentally with a prototype camera system. We compare our system against existing single-element designs, including an aspherical lens and a pinhole, and we compare against a complex multielement lens, validating high-quality large field-of-view (i.e. 53°) imaging performance using only a single thin-plate element.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助无限的宫苴采纳,获得10
2秒前
虚心的如曼完成签到 ,获得积分10
2秒前
重要访文应助ahhhhkkkha采纳,获得10
3秒前
老武发布了新的文献求助30
5秒前
123完成签到,获得积分10
6秒前
6秒前
七七完成签到,获得积分10
6秒前
火星上白安完成签到,获得积分10
6秒前
su执完成签到,获得积分10
7秒前
Marksman497完成签到,获得积分10
9秒前
zrm完成签到,获得积分10
9秒前
10秒前
冷风完成签到 ,获得积分10
11秒前
科研通AI5应助寂寞的迎天采纳,获得10
12秒前
海棠发布了新的文献求助10
12秒前
Marksman497发布了新的文献求助10
12秒前
VDC发布了新的文献求助10
13秒前
14秒前
justsoso完成签到,获得积分10
15秒前
momo111完成签到,获得积分10
15秒前
LSJ完成签到,获得积分10
15秒前
充电宝应助YuGe采纳,获得10
19秒前
迷路的书南应助LSJ采纳,获得10
19秒前
安婷fly完成签到,获得积分10
19秒前
dongqing12311完成签到,获得积分10
19秒前
103921wjk完成签到,获得积分10
19秒前
喵喵的鱼完成签到 ,获得积分10
20秒前
大白发布了新的文献求助20
20秒前
21秒前
ym完成签到,获得积分10
22秒前
23秒前
25秒前
25秒前
liang完成签到,获得积分10
26秒前
Lz完成签到,获得积分10
26秒前
lingod完成签到,获得积分10
27秒前
话语发布了新的文献求助10
29秒前
lz完成签到,获得积分10
30秒前
amanda发布了新的文献求助10
32秒前
王慧珍完成签到,获得积分20
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
SQL vs NoSQL: Six Systems Compared 401
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841