A Novel Two-stage Separable Deep Learning Framework for Practical Blind Watermarking

计算机科学 稳健性(进化) 数字水印 编码器 深度学习 人工智能 噪音(视频) 计算机工程 算法 语音识别 图像(数学) 生物化学 化学 基因 操作系统
作者
Yang Liu,Mengxi Guo,Jian Zhang,Yuesheng Zhu,Xiaodong Xie
标识
DOI:10.1145/3343031.3351025
摘要

As a vital copyright protection technology, blind watermarking based on deep learning with an end-to-end encoder-decoder architecture has been recently proposed. Although the one-stage end-to-end training (OET) facilitates the joint learning of encoder and decoder, the noise attack must be simulated in a differentiable way, which is not always applicable in practice. In addition, OET often encounters the problems of converging slowly and tends to degrade the quality of watermarked images under noise attack. In order to address the above problems and improve the practicability and robustness of algorithms, this paper proposes a novel two-stage separable deep learning (TSDL) framework for practical blind watermarking. Precisely, the TSDL framework is composed of noise-free end-to-end adversary training (FEAT) and noise-aware decoder-only training (ADOT). A redundant multi-layer feature encoding network is developed in FEAT to obtain the encoder, while ADOT is used to get the decoder which is robust and practical enough to accept any type of noise. Extensive experiments demonstrate that the proposed framework not only exhibits better stability, greater performance and faster convergence speed compared with current state-of-the-art OET methods, but is also able to resist high-intensity noises that have not been tested in previous works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西川完成签到 ,获得积分10
刚刚
1秒前
深情安青应助欣欣子采纳,获得10
1秒前
4秒前
香蕉觅云应助某宁采纳,获得10
4秒前
小烤鱼完成签到,获得积分10
5秒前
李健的小迷弟应助小李采纳,获得10
5秒前
6秒前
6秒前
小白发布了新的文献求助10
7秒前
7秒前
8秒前
qkren完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
狂野的蜡烛完成签到,获得积分10
11秒前
迅速的千风完成签到,获得积分10
11秒前
地摊届扛把子完成签到,获得积分10
12秒前
riceyellow发布了新的文献求助30
12秒前
12秒前
标致的傲之完成签到,获得积分10
13秒前
yihoxu发布了新的文献求助10
13秒前
欣欣子发布了新的文献求助10
15秒前
Sofia关注了科研通微信公众号
15秒前
15秒前
15秒前
壮观梦易发布了新的文献求助10
16秒前
哈哈完成签到 ,获得积分10
18秒前
18秒前
19秒前
xiaoxiao晓完成签到,获得积分10
21秒前
long发布了新的文献求助10
22秒前
23秒前
23秒前
李健的小迷弟应助笑嘻嘻采纳,获得10
23秒前
pysa完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846395
求助须知:如何正确求助?哪些是违规求助? 3388915
关于积分的说明 10554874
捐赠科研通 3109328
什么是DOI,文献DOI怎么找? 1713661
邀请新用户注册赠送积分活动 824819
科研通“疑难数据库(出版商)”最低求助积分说明 775068