亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The evaluation of landslide comprehensive susceptibility based on stacking ensemble learning fusion model and SBAS-InSAR: a case study in lexi highway

山崩 集成学习 地质学 随机森林 集合预报 人工智能 断层(地质) 支持向量机 传感器融合 遥感 地震学 地图学 变形(气象学)
作者
Chaofei Li,Tianbin Li,Fu-an Lan,Yang Ren,Yan Wen,Cai Wencheng
出处
期刊:Frontiers in Earth Science [Frontiers Media SA]
卷期号:13
标识
DOI:10.3389/feart.2025.1675848
摘要

Introduction Frequent landslides along the Lexi highway have significantly hindered the construction and operation of engineering projects, impeding regional development. This study aims to clarify the distribution patterns and regional risks of these landslides to support risk management. Methods An ensemble learning fusion model, combining Random Forest (RF) and Extreme Gradient Boosting (XGBoost) via a Stacking algorithm, was first constructed to evaluate landslide susceptibility. Subsequently, the SBAS-InSAR method was applied to analyze long-term Sentinel-1A ascending and descending orbit data to determine surface deformation rates. Finally, a comprehensive susceptibility evaluation matrix was developed by integrating the susceptibility results with the deformation rates to generate a landslide comprehensive susceptibility map. Results Landslide sites are densely distributed along the Lexi highway, with an areal density of 15 landslides per 100 km 2 and a linear density of 0.89 landslides per kilometer; The influence of distance to the fault zones, human activity intensity and rainfall on the distribution of landslides along the Lexi highway is the most significant, with the importance indexes of 0.27, 0.24, 0.21, respectively; Compared to other models, the Stacking ensemble learning fusion model shows superior predictive performance and generalization ability, achieving an AUC of 0.977 in evaluating landslide susceptibility along the Lexi highway; The landslide comprehensive susceptibility map effectively identifies regions with significant deformation, reducing very low and low susceptibility zones while increasing very high susceptibility zones by about 1.1%. Discussion The ensemble learning fusion model with InSAR-derived deformation data significantly improved the accuracy of the landslide susceptibility assessment. This comprehensive approach effectively reduces false alarms in areas with intensive engineering and high deformation rates, providing a more scientifically-grounded basis for landslide risk prevention and control along the Lexi highway.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助aydidar采纳,获得10
3秒前
lsl应助科研通管家采纳,获得10
8秒前
12秒前
HC发布了新的文献求助10
15秒前
aydidar发布了新的文献求助10
17秒前
20秒前
ding应助HC采纳,获得30
23秒前
领导范儿应助Ruby采纳,获得10
26秒前
42秒前
linkman发布了新的文献求助50
46秒前
52秒前
54秒前
陳.发布了新的文献求助10
57秒前
十二发布了新的文献求助10
58秒前
量子星尘发布了新的文献求助10
1分钟前
Xhnz发布了新的文献求助10
1分钟前
1分钟前
十二完成签到,获得积分20
1分钟前
1分钟前
Ruby发布了新的文献求助10
1分钟前
zpli完成签到 ,获得积分10
1分钟前
lsl应助科研通管家采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
陈小子完成签到 ,获得积分10
2分钟前
嘻嘻哈哈完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
Jasper应助杨sq采纳,获得10
3分钟前
水水水发布了新的文献求助10
3分钟前
3分钟前
杨sq发布了新的文献求助10
3分钟前
科研通AI6应助Trivers采纳,获得10
3分钟前
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得30
4分钟前
科研通AI6应助shier采纳,获得10
4分钟前
景清完成签到 ,获得积分10
4分钟前
顾矜应助kekao采纳,获得10
5分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644707
求助须知:如何正确求助?哪些是违规求助? 4765184
关于积分的说明 15025524
捐赠科研通 4803066
什么是DOI,文献DOI怎么找? 2567894
邀请新用户注册赠送积分活动 1525458
关于科研通互助平台的介绍 1484992