已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a Bariatric Surgery Specific Artificial Intelligence Large Language Model: BariatricSurgeryGPT

作者
Berk B Ozmen,Ibrahim Berber,Jerry T. Dang,Graham S. Schwarz,Matthew Kroh
出处
期刊:Surgical Innovation [SAGE Publishing]
标识
DOI:10.1177/15533506251400130
摘要

Background Commercially available large language models (LLMs) have demonstrated impressive capabilities in processing vast datasets and generating coherent narratives. However, their lack of domain-specific knowledge limits their reliability in clinical applications. This study aimed to develop and evaluate BariatricSurgeryGPT, a fine-tuned LLM specifically tailored for bariatric surgery to provide more accurate and clinically relevant responses to bariatric surgery-related questions. Methods We obtained 8764 bariatric surgery research abstracts published between January 1, 2020, and January 1, 2024, from PubMed. These abstracts were preprocessed and tokenized to fine-tune a pre-trained GPT-2 model using PyTorch and HuggingFace frameworks. The model’s performance was evaluated using BLEU, METEOR, and ROUGE-1 scores on 20 clinically relevant bariatric surgery questions, each tested across nine temperature settings (0.1-0.9) for both the fine-tuned and baseline GPT-2 models, yielding 360 total evaluation instances. Results BariatricSurgeryGPT demonstrated consistent improvements over the baseline GPT-2 model across all metrics. The fine-tuned model achieved a BLEU score of 0.165 (vs 0.147 for baseline, 12.8% improvement), a METEOR score of 0.633 (vs 0.585, 8.2% improvement), and a ROUGE-1 score of 0.267 (vs 0.243, 9.7% improvement). These improvements indicate enhanced precision, recall, and semantic relevance in generating bariatric surgery-specific content. Conclusion BariatricSurgeryGPT represents the first domain-specific LLM for bariatric surgery and demonstrates the feasibility of developing specialty-specific AI tools with improved accuracy for clinical applications. The specialty-specific models could enhance surgical education through interactive learning tools, improve patient communication via personalized educational materials, and support clinical decision-making by providing evidence-based information synthesis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脆脆鲨发布了新的文献求助10
3秒前
斯文败类应助风笛采纳,获得10
4秒前
小杭76应助lxy采纳,获得10
12秒前
13秒前
钟山完成签到,获得积分10
13秒前
zxy发布了新的文献求助10
14秒前
脑洞疼应助绵绵不觉采纳,获得30
15秒前
浮游应助唯一采纳,获得10
16秒前
风笛发布了新的文献求助10
19秒前
19秒前
22秒前
陌年完成签到,获得积分10
23秒前
qiaoke完成签到,获得积分10
26秒前
Candy2024完成签到 ,获得积分10
27秒前
27秒前
xiaojun完成签到,获得积分10
29秒前
29秒前
30秒前
33秒前
monned发布了新的文献求助10
33秒前
36秒前
bkagyin应助琳666采纳,获得10
36秒前
小玉完成签到,获得积分10
37秒前
41秒前
欢呼香完成签到 ,获得积分10
42秒前
42秒前
dabriaolga应助科研通管家采纳,获得10
42秒前
Ava应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
小明应助科研通管家采纳,获得10
42秒前
SciGPT应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
dabriaolga应助科研通管家采纳,获得10
43秒前
顾矜应助科研通管家采纳,获得10
43秒前
小蘑菇应助科研通管家采纳,获得10
43秒前
小明应助科研通管家采纳,获得10
43秒前
dabriaolga应助科研通管家采纳,获得10
43秒前
43秒前
浮游应助科研通管家采纳,获得10
43秒前
竹筏过海应助科研通管家采纳,获得80
43秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334153
求助须知:如何正确求助?哪些是违规求助? 4472374
关于积分的说明 13920065
捐赠科研通 4366215
什么是DOI,文献DOI怎么找? 2398903
邀请新用户注册赠送积分活动 1392074
关于科研通互助平台的介绍 1362722