C3D-ConvLSTM based cow behaviour classification using video data for precision livestock farming

人工智能 Softmax函数 计算机科学 模式识别(心理学) 牲畜 深度学习 F1得分 机器学习 地理 林业
作者
Yongliang Qiao,Yangyang Guo,Keping Yu,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106650-106650 被引量:51
标识
DOI:10.1016/j.compag.2021.106650
摘要

• The C3D-ConvLSTM based cow behaviour classification using video data is proposed. • Key spatial–temporal features were captured for behavior representation. • The proposed model achieved over 86% classification accuracy on calf and cow datasets. • This model can be used to classify animal behaviour at different growth stages. Cow behaviour provides valuable information about animal welfare, activities and livestock production. Therefore, monitoring of behaviour is gaining importance in the improvement of animal health, fertility and production yield. However, recognizing or classifying different behaviours with high accuracy is challenging, because of the high similarity of movements among these behaviours. In this study, we propose a deep learning framework to monitor and classify dairy behaviours, which is intelligently combined with C3D (Convolutional 3D) network and ConvLSTM (Convolutional Long Short-Term Memory) to classify the five common behaviours included feeding, exploring, grooming, walking and standing. For this, 3D CNN features were firstly extracted from video frames using C3D network; then ConvLSTM was applied to further extract spatio-temporal features, and the final obtained features were fed to a softmax layer for behaviour classification. The proposed approach using 30-frame video length achieved 90.32% and 86.67% classification accuracy on calf and cow datasets respectively, which outperformed the state-of-the-art methods including Inception-V3, SimpleRNN, LSTM, BiLSTM and C3D. Additionally, the influence of video length on behaviour classification was also investigated. It was found that increasing video sequence length to 30-frames enhanced classification performance. Extensive experiments show that combining C3D and ConvLSTM together can improve video-based behaviour classification accuracy noticeably using spatial–temporal features, which enables automated behaviour classification for precision livestock farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的黑米完成签到,获得积分10
刚刚
月上柳梢头完成签到,获得积分10
刚刚
dfghjkl发布了新的文献求助10
1秒前
1秒前
JusT发布了新的文献求助10
1秒前
2秒前
深情安青应助拉克丝采纳,获得10
2秒前
嗯哼发布了新的文献求助10
2秒前
cccui发布了新的文献求助10
3秒前
3秒前
大尾巴白完成签到 ,获得积分10
4秒前
4秒前
幸福大白发布了新的文献求助10
4秒前
4秒前
小二郎应助Cloud采纳,获得20
5秒前
烟花应助Lignin采纳,获得10
5秒前
lelouchvcc发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
dddd完成签到,获得积分10
8秒前
9秒前
无花果应助sunflower采纳,获得10
9秒前
10秒前
10秒前
10秒前
科研通AI5应助jason采纳,获得10
10秒前
ryggs发布了新的文献求助10
11秒前
accept完成签到,获得积分10
11秒前
11秒前
田様应助dddd采纳,获得10
12秒前
科研通AI6应助wzy采纳,获得10
12秒前
洁净的诗珊完成签到,获得积分10
12秒前
汉堡包应助饱满的凡雁采纳,获得10
13秒前
GPTea应助优雅含莲采纳,获得20
14秒前
大模型应助JusT采纳,获得10
14秒前
14秒前
hhy发布了新的文献求助10
14秒前
15秒前
shelly7788发布了新的文献求助10
15秒前
Owen应助风中的丝袜采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4703991
求助须知:如何正确求助?哪些是违规求助? 4071181
关于积分的说明 12589128
捐赠科研通 3771786
什么是DOI,文献DOI怎么找? 2083375
邀请新用户注册赠送积分活动 1110579
科研通“疑难数据库(出版商)”最低求助积分说明 988367