亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SCSTCF: Spatial-Channel Selection and Temporal Regularized Correlation Filters for visual tracking

人工智能 判别式 模式识别(心理学) 计算机科学 视频跟踪 保险丝(电气) 增广拉格朗日法 跟踪(教育) 滤波器(信号处理) 相关性 BitTorrent跟踪器 计算机视觉 眼动 数学 对象(语法) 算法 工程类 电气工程 教育学 心理学 几何学
作者
Jianming Zhang,Wenjun Feng,Tingyu Yuan,Jin Wang,Arun Kumar Sangaiah
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:118: 108485-108485 被引量:152
标识
DOI:10.1016/j.asoc.2022.108485
摘要

Recently, combining multiple features into discriminative correlation filters to improve tracking representation has shown great potential in object tracking. Existing trackers apply fixed weights to fuse features or fuse response maps, which cannot adapt to the object drift well. Moreover, in the tracking algorithm, using cyclic shift to obtain training samples always cause boundary effect, resulting in dissatisfied tracking effect. Therefore, we first design a multiple features fusion method. Various handcrafted features are fused with the same weight, then the fused handcrafted features and deep features are fused by adaptive weights, which considerably improves the representation ability of the tracking object. Second, we propose a correlation filter object function model called Spatial-Channel Selection and Temporal Regularized Correlation Filters. We perform the grouping features selection from the dimensions of channel, spatial and temporal, so as to establish the relevance between the multi-channel features and the correlation filter. Finally, we transform the objective function of the model with equality constraint to augmented Lagrangian multiplier formula without constraint, which is divided into three subproblems with closed-form solutions. The optimal solution is obtained by iteratively solving three subproblems using Alternating Direction Multiplier Method (ADMM). We conduct extensive experiments in four public datasets, OTB-2013, OTB-2015, TC128, UAV123, and VOT2016. The experimental results represent our proposed tracker performs favorably against other prevailing trackers in success rate and precision. • We propose an adaptive weight fusion method to fuse handcrafted features and deep feature response maps. • We propose a novel CF model which combine spatial-channel selection of feature maps with temporal consistency constraint. • Our model is a general CF model and is derived by ADMM to obtain its optimal closed-form solution. • We achieve comparable performances with other state-of-the-art methods on 5 challenging datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
38秒前
38秒前
量子星尘发布了新的文献求助10
1分钟前
肖潇完成签到,获得积分10
1分钟前
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
MMMMM应助科研通管家采纳,获得30
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
研友_VZG7GZ应助开心的大米采纳,获得30
2分钟前
2分钟前
激情的健柏完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
认真自行车完成签到,获得积分10
2分钟前
2分钟前
2分钟前
zjx完成签到,获得积分10
3分钟前
悦耳茗完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
好心完成签到,获得积分10
4分钟前
桥西小河完成签到 ,获得积分10
4分钟前
火星上宛秋完成签到 ,获得积分10
5分钟前
肖潇关注了科研通微信公众号
5分钟前
小zz完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
肖潇发布了新的文献求助10
5分钟前
null应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
MMMMM应助科研通管家采纳,获得30
5分钟前
null应助科研通管家采纳,获得10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
852应助拼搏啤酒采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4304260
求助须知:如何正确求助?哪些是违规求助? 3827372
关于积分的说明 11979532
捐赠科研通 3468336
什么是DOI,文献DOI怎么找? 1902182
邀请新用户注册赠送积分活动 949780
科研通“疑难数据库(出版商)”最低求助积分说明 851742