An advanced soil organic carbon content prediction model via fused temporal-spatial-spectral (TSS) information based on machine learning and deep learning algorithms

遥感 均方误差 计算机科学 随机森林 高光谱成像 多光谱图像 表土 土壤碳 偏最小二乘回归 人工智能 环境科学 算法 机器学习 土壤科学 统计 土壤水分 地理 数学
作者
Xiangtian Meng,Yilin Bao,Yiang Wang,Xinle Zhang,Huanjun Liu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:280: 113166-113166 被引量:55
标识
DOI:10.1016/j.rse.2022.113166
摘要

Knowledge of the soil organic carbon (SOC) content is critical for environmental sustainability and carbon neutrality. With the development of remote sensing data and prediction models, the comprehensive utilization of multisource remote sensing data based on a fusion approach and testing its effectiveness in SOC content prediction is an interesting and challenging topic. However, there is no evidence showing the role of different data sources in the SOC content prediction process. In this study, a total of 796 topsoil samples (0–20 cm) were collected at Site 1, and 111 samples were collected at Site 2. The samples from Site 2 were used to verify the transferability of the prediction model established at Site 1. The discrete wavelet transform based on the regional energy weight (RW-DWT) and spectral band segmentation methods were used to fuse the temporal information of 10 scenes of Landsat multispectral image data from 2009 to 2019, the spatial information of topography data and the spectral information of GaoFen-5 hyperspectral images. Then, the SOC content prediction models were established by temporal-spatial-spectral (TSS) information using partial least squares regression (PLSR), random forest (RF) and convolutional neural network (CNN) algorithms. The results indicated that the optimal SOC content prediction model consisted of TSS information as input and the CNN as the prediction model, where the lowest root mean square error (RMSE) was 2.49 g kg −1 , the highest coefficient of determination (R 2 ) was 0.86 and the ratio of performance to interquartile distance (RPIQ) was 1.91. Next, the order of the effect was spectral > temporal > spatial information in terms of SOC content prediction, and their roles in improving the accuracy of the model were 26.79%, 19.64% and 14.29%, respectively, with the CNN model. In addition, the CNN yielded a higher prediction accuracy than PLSR and RF regardless of which group of input variables was used. The average RMSE of the CNN was 0.42 g kg −1 lower than that of the RF, and the average R 2 and RPIQ were 9.25% and 0.14 higher, respectively, than those of the RF. The above conclusions were confirmed in the verification area, namely, the optimal SOC content prediction model at Site 2 consisted of TSS information as input and the CNN as the prediction model (RMSE = 1.01 g kg −1 , R 2 = 0.76 and RPIQ = 1.41). Therefore, the novel method proposed in this study is robust. This work provides a new idea for predicting soil properties by the comprehensive use of multisource remote sensing images and deep learning algorithms in the future. • The ability of TSS information in SOC prediction is determined. • The SOC prediction model with high-accuracy and high-transferability is established. • The method of temporal, spatial, spectral information fusion is improved. • The role of temporal, spatial, spectral information for SOC prediction is revealed. • “Data fusion + deep learning” strategy provide a new paradigm for SOC prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海王星完成签到,获得积分10
1秒前
1秒前
mylaodao完成签到,获得积分0
2秒前
6秒前
充电宝应助Wk采纳,获得10
8秒前
鱼氵发布了新的文献求助10
9秒前
10秒前
士艳完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
11秒前
混子小白发布了新的文献求助10
12秒前
12秒前
乐乐应助熠烁采纳,获得10
16秒前
大模型应助北雁采纳,获得10
21秒前
chase完成签到,获得积分10
22秒前
踏实的南琴完成签到 ,获得积分10
24秒前
12214完成签到,获得积分10
24秒前
深情安青应助谦让的溪流采纳,获得10
25秒前
25秒前
熠烁完成签到,获得积分10
27秒前
顾大喵完成签到,获得积分10
28秒前
aman发布了新的文献求助10
28秒前
香蕉秋寒发布了新的文献求助20
28秒前
乐乐应助paopao采纳,获得10
29秒前
新晋学术小生完成签到 ,获得积分10
30秒前
LKSkywalker完成签到,获得积分10
30秒前
鳗鱼颖完成签到 ,获得积分10
31秒前
32秒前
35秒前
张益达完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
想好好搞事业完成签到,获得积分10
37秒前
俭朴水彤完成签到,获得积分20
40秒前
Wk发布了新的文献求助10
40秒前
顺心的惜蕊完成签到 ,获得积分10
41秒前
43秒前
43秒前
太阳XIX完成签到,获得积分10
44秒前
大个应助探寻采纳,获得10
44秒前
香蕉秋寒完成签到,获得积分10
45秒前
wanghaowen发布了新的文献求助10
48秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876349
求助须知:如何正确求助?哪些是违规求助? 3418937
关于积分的说明 10711058
捐赠科研通 3143541
什么是DOI,文献DOI怎么找? 1734424
邀请新用户注册赠送积分活动 836786
科研通“疑难数据库(出版商)”最低求助积分说明 782823