Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma

拉曼光谱 线性判别分析 人工智能 主成分分析 支持向量机 食管鳞状细胞癌 机器学习 医学 肿瘤科 癌症 内科学 计算机科学 物理 光学
作者
Wenhua Huang,Qi‐Xin Shang,Xin Xiao,Hanlu Zhang,Yi‐Min Gu,Lin Yang,Guidong Shi,Yu‐Shang Yang,Hu Yang,Yong Yuan,Aifang Ji,Longqi Chen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:281: 121654-121654 被引量:21
标识
DOI:10.1016/j.saa.2022.121654
摘要

Early diagnosis of esophageal squamous cell carcinoma (ESCC), a common malignant tumor with a low overall survival rate due to metastasis and recurrence, is critical for effective treatment and improved prognosis. Raman spectroscopy, an advanced detection technology for esophageal cancer, was developed to improve diagnosis sensitivity, specificity, and accuracy. This study proposed a novel, effective, and noninvasive Raman spectroscopy technique to differentiate and classify ESCC cell lines. Seven ESCC cell lines and tissues of an ESCC patient with staging of T3N1M0 and T3N2M0 at low and high differentiation levels were investigated through Raman spectroscopy. Raman spectral data analysis was performed with four machine learning algorithms, namely principal components analysis (PCA)- linear discriminant analysis (LDA), PCA-eXtreme gradient boosting (XGB), PCA- support vector machine (SVM), and PCA- (LDA, XGB, SVM)-stacked Gradient Boosting Machine (GBM). Four machine learning algorithms were able to classifiy ESCC cell subtypes from normal esophageal cells. The PCA-XGB model achieved an overall predictive accuracy of 85% for classifying ESCC and adjacent tissues. Moreover, an overall predictive accuracy of 90.3% was achieved in distinguishing low differentiation and high differentiation ESCC tissues with the same stage when PCA-LDA, XGM, and SVM models were combined. This study illustrated the Raman spectral traits of ESCC cell lines and esophageal tissues related to clinical pathological diagnosis. Future studies should investigate the role of Raman spectral features in ESCC pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助always采纳,获得10
刚刚
1秒前
小小小新完成签到,获得积分10
1秒前
strug783发布了新的文献求助10
2秒前
小小小新发布了新的文献求助10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
chenyi应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
4秒前
六十一完成签到,获得积分10
5秒前
木云浅夏发布了新的文献求助10
7秒前
8秒前
南瓜猪猪头完成签到 ,获得积分10
9秒前
10秒前
10秒前
哈哈完成签到,获得积分10
12秒前
xunlei发布了新的文献求助10
12秒前
科目三应助肉脸小鱼采纳,获得10
13秒前
jianglili发布了新的文献求助10
13秒前
Hello应助小小小新采纳,获得10
14秒前
14发布了新的文献求助10
15秒前
16秒前
18秒前
18秒前
19秒前
绝尘发布了新的文献求助10
20秒前
20秒前
strug783完成签到,获得积分10
22秒前
踏雪飞鸿发布了新的文献求助10
22秒前
隐形小小发布了新的文献求助10
23秒前
wenfeisun发布了新的文献求助10
25秒前
科研通AI5应助14采纳,获得10
26秒前
Layli完成签到,获得积分10
27秒前
27秒前
诺奇发布了新的文献求助10
27秒前
所所应助绝尘采纳,获得10
31秒前
under完成签到,获得积分10
31秒前
32秒前
羽羽发布了新的文献求助10
34秒前
AKACrown完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780270
求助须知:如何正确求助?哪些是违规求助? 3325566
关于积分的说明 10223524
捐赠科研通 3040706
什么是DOI,文献DOI怎么找? 1668974
邀请新用户注册赠送积分活动 798936
科研通“疑难数据库(出版商)”最低求助积分说明 758634