Trends and Prospects of Techniques for Haze Removal From Degraded Images: A Survey

薄雾 能见度 计算机科学 计算机视觉 污垢 人工智能 对比度(视觉) 图像复原 透视图(图形) 图像处理 图像(数学) 地理 地图学 气象学
作者
Geet Sahu,Ayan Seal,Debotosh Bhattacharjee,Mita Nasipuri,Peter Brida,Ondrej Krejcar
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (4): 762-782 被引量:7
标识
DOI:10.1109/tetci.2022.3173443
摘要

For the last two decades, image processing techniques have been used frequently in computer vision applications. The most challenging task in image processing is restoring images that are degraded due to various weather conditions. Mainly, the visibility of outdoor images is corrupted due to adverse atmospheric effects. The visibility of acquired images is reduced in these circumstances. Haze is an atmospheric phenomenon that reduces the clarity of an image. Due to the presence of particles such as dust, dirt, soot, or smoke, there is significant decay in the color and contrast of captured images. Haze present in acquired images causes issues in a variety of computer vision applications. Therefore, enhancing the contrast of a hazy image and restoring the visibility of the scene is essential. Since clear images are required in every application, image dehazing is an important step. Hence, many researchers are working on it. Different methods have been presented in the literature for image dehazing. This study describes various traditional and deep learning techniques of image dehazing from an analytical perspective. The main intention behind this work is to provide an intuitive understanding of the major techniques that have made a relevant contribution to haze removal. In this paper, we have covered different types of contributions toward dehazing based on the traditional method as well as deep learning approaches. With a considerable amount of instinctive simplifications, the reader is expected to have an improved ability to visualize the internal dynamics of these processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiayouYi完成签到,获得积分10
1秒前
Cheshire完成签到,获得积分10
1秒前
隐形曼青应助tesla采纳,获得10
3秒前
mary完成签到 ,获得积分10
5秒前
美满的泥猴桃完成签到,获得积分10
6秒前
6秒前
怡然雨雪完成签到,获得积分10
6秒前
Mr咸蛋黄完成签到,获得积分10
7秒前
渡劫完成签到,获得积分10
7秒前
铂铑钯钌完成签到,获得积分10
7秒前
的地方法规完成签到,获得积分10
7秒前
俏皮的荔枝完成签到,获得积分10
7秒前
揽茝完成签到 ,获得积分10
8秒前
无限毛豆完成签到 ,获得积分10
9秒前
咕咕完成签到,获得积分10
9秒前
HCLonely完成签到,获得积分0
10秒前
烂漫的蜡烛完成签到 ,获得积分10
10秒前
67完成签到 ,获得积分10
10秒前
wanglejia完成签到,获得积分10
11秒前
无为完成签到,获得积分10
11秒前
仿生人完成签到,获得积分10
12秒前
汉堡包应助yyyyy采纳,获得10
12秒前
神采奕奕呀完成签到,获得积分10
12秒前
zzuwxj完成签到,获得积分10
13秒前
Loststar完成签到,获得积分10
14秒前
深情安青应助可露丽采纳,获得10
14秒前
zhuxd完成签到,获得积分10
14秒前
tongke完成签到,获得积分10
15秒前
Sea完成签到,获得积分10
15秒前
Star完成签到,获得积分10
16秒前
Wayne完成签到,获得积分0
16秒前
wjw完成签到,获得积分10
16秒前
拼搏半梦完成签到,获得积分10
17秒前
17秒前
tesla发布了新的文献求助10
20秒前
鱼女士完成签到,获得积分10
21秒前
21秒前
...完成签到 ,获得积分0
22秒前
lmq完成签到 ,获得积分10
22秒前
LSS完成签到,获得积分10
22秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811789
求助须知:如何正确求助?哪些是违规求助? 3356092
关于积分的说明 10379425
捐赠科研通 3073158
什么是DOI,文献DOI怎么找? 1688205
邀请新用户注册赠送积分活动 811866
科研通“疑难数据库(出版商)”最低求助积分说明 766893