Rapid seismic response prediction of RC frames based on deep learning and limited building information

帧(网络) 功能(生物学) 建筑信息建模 计算机科学 地震分析 弹性(材料科学) 加速度 人工神经网络 建筑模型 结构工程 工程类 土木工程 人工智能 模拟 生物 进化生物学 热力学 化学工程 相容性(地球化学) 经典力学 物理 电信
作者
Weiping Wen,Chenyu Zhang,Changhai Zhai
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:267: 114638-114638 被引量:42
标识
DOI:10.1016/j.engstruct.2022.114638
摘要

Building portfolio is the important urban engineering system, and the seismic resilience assessment of a city needs the quick and accurate prediction of the seismic responses of existed buildings. However, many existed buildings generally possess the problem that the design information materials are incomplete or completely lost. The major challenge in the seismic resilience assessment of building portfolio is how to predict the seismic responses of buildings quickly and accurately just using limited building information. This manuscript aims to develop a method for the seismic response prediction of the existed reinforced concrete (RC) frame buildings just using limited building information. A total of 162 typical RC frame buildings of low to medium rise are designed, and the inter-story drift (IDR) as well as peak floor acceleration (PFA) of each floor in each building are computed for 200 ground motions with nonlinear time history analysis (NLTHA) method. A convolutional neural network (CNN) is developed with ground motion records and five easy-getting building parameters as inputs. The outputs are IDR and PFA of each floor for the given building. Considering the physical means of an input parameter—number of stories, the modified loss function and modified evaluation function are proposed. The developed network is trained with the computed dataset and the modified loss function, and the trained model (referred to StruNet) can take the characteristics of ground motions and structures into consideration together comparing to previous studies. The proposed model is verified through four cases (i.e., 4 actual buildings with different construction time, occupancy types, and plane layouts), which are independent of the deep learning dataset. The results confirm that the proposed method offers prediction results with sufficient accuracy and shows high computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学医自救发布了新的文献求助10
1秒前
7秒前
一二发布了新的文献求助10
8秒前
情怀应助小宇子采纳,获得30
9秒前
共享精神应助哇卡卡采纳,获得10
10秒前
万能图书馆应助zxtwins采纳,获得10
11秒前
12秒前
13秒前
烟火岸上完成签到,获得积分10
13秒前
13秒前
14秒前
小怪兽完成签到 ,获得积分10
14秒前
Guochunbao完成签到,获得积分10
15秒前
冯家乐发布了新的文献求助30
16秒前
汉堡包应助yuki采纳,获得10
17秒前
自由山槐完成签到,获得积分10
17秒前
冰魂应助激情的香旋采纳,获得10
18秒前
wanci应助水若冰寒采纳,获得10
19秒前
hys发布了新的文献求助10
19秒前
理想国的过客完成签到,获得积分10
19秒前
19秒前
杨xy完成签到,获得积分10
20秒前
20秒前
打击8完成签到 ,获得积分10
21秒前
愉快彩虹完成签到,获得积分10
21秒前
科研通AI5应助Alger采纳,获得10
22秒前
23秒前
24秒前
安静凡旋发布了新的文献求助10
24秒前
文艺访风完成签到,获得积分10
25秒前
26秒前
28秒前
28秒前
栗子完成签到,获得积分10
28秒前
人参完成签到,获得积分10
29秒前
Ava应助凤梨罐头采纳,获得10
30秒前
CodeCraft应助魔幻三问采纳,获得10
30秒前
水若冰寒发布了新的文献求助10
31秒前
万能图书馆应助沉默采纳,获得10
32秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462