Open-set gas recognition: A case-study based on an electronic nose dataset

电子鼻 人工智能 Softmax函数 模式识别(心理学) 计算机科学 卷积神经网络 试验装置 特征(语言学) 集合(抽象数据类型) 样品(材料) 感知器 人工神经网络 聚类分析 机器学习 数据挖掘 哲学 化学 色谱法 程序设计语言 语言学
作者
Cheng Qu,Chuanjun Liu,Yun Gu,Shuiqin Chai,Changhao Feng,Bin Chen
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:360: 131652-131652 被引量:15
标识
DOI:10.1016/j.snb.2022.131652
摘要

Electronic nose (E-Nose) has been widely used in detection and classification of gases. The learning models of traditional E-Noses are generally limited in closed-set environment: the training and test samples share the same label spaces. However, a more challenging and realistic scenario of E-Noses is open-set learning, where the test samples contains classes unseen during the model training. This study investigated the possibility of open-set learning models for the recognition and classification of gases based on a public electronic nose datasets. The dataset includes the response of a 72-channels MOS sensor array on 10 gaseous substances. The original data was preprocessed by two methods: one is to manually extract features from the response curve of each sample, and the other is to down-sample the original sample into a matrix. Then multilayer perceptron (MLP) and convolution neural network (CNN) were used to extract the feature vectors of the data processed by the two processing methods respectively. The performance of four different open-set recognition models, including softmax threshold (ST), OpenMax, extreme value machine (EVM) and class anchor clustering (CAC), was compared based on the feature vectors obtained from two neural networks. To understand the effect of sensor drift on the models, we also validated the models on a commonly used sensor drift dataset. The results demonstrated that for the open-set detection task, the CNN-based CAC (CAC-CNN) outperformed the other methods. For the closed-set recognition task, the CNN-based classification model achieved higher accuracy. On sensor drift dataset, the performance of open-set recognition models has decreased a lot, and it seems that drift has a large negative impact on the open-set gas recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴哒发布了新的文献求助10
1秒前
聂亦发布了新的文献求助10
1秒前
科研通AI2S应助生活大和谐采纳,获得10
2秒前
3秒前
4秒前
Unbelievable发布了新的文献求助10
5秒前
Aisha发布了新的文献求助10
5秒前
柏林寒冬应助LUMOS采纳,获得10
6秒前
淡淡梦容发布了新的文献求助10
8秒前
8秒前
一投就中发布了新的文献求助10
8秒前
英姑应助罗洛洛采纳,获得10
9秒前
9秒前
上官若男应助要减肥的chao采纳,获得10
9秒前
英姑应助deway采纳,获得10
10秒前
10秒前
Hello应助yyao采纳,获得30
10秒前
聂亦完成签到,获得积分10
11秒前
小巧书雪发布了新的文献求助10
11秒前
脑洞疼应助华冰采纳,获得10
11秒前
胡子西瓜完成签到,获得积分10
12秒前
所所应助唯萌嗜徒采纳,获得10
13秒前
14秒前
优美鱼发布了新的文献求助10
14秒前
CodeCraft应助淡淡十三采纳,获得10
14秒前
fei发布了新的文献求助30
14秒前
Santiana发布了新的文献求助10
14秒前
15秒前
suicone发布了新的文献求助10
15秒前
共享精神应助甜蜜的大树采纳,获得10
16秒前
香蕉觅云应助rock采纳,获得10
17秒前
18秒前
19秒前
光亮千易完成签到,获得积分10
19秒前
陶醉的凌瑶完成签到,获得积分10
20秒前
优美鱼完成签到,获得积分10
21秒前
娇娇完成签到 ,获得积分10
21秒前
Solitude_Z发布了新的文献求助10
21秒前
科研通AI6应助李星星采纳,获得10
21秒前
不安青牛应助苏苏苏采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4406252
求助须知:如何正确求助?哪些是违规求助? 3891566
关于积分的说明 12110588
捐赠科研通 3536583
什么是DOI,文献DOI怎么找? 1940633
邀请新用户注册赠送积分活动 981360
科研通“疑难数据库(出版商)”最低求助积分说明 877892