亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Drawdown beta and portfolio optimization

水位下降(水文) BETA(编程语言) 文件夹 经济 计量经济学 资本资产定价模型 下行风险 市场投资组合 金融经济学 投资组合优化 数学 地质学 计算机科学 岩土工程 含水层 地下水 程序设计语言
作者
Rui Ding,Stan Uryasev
出处
期刊:Quantitative Finance [Informa]
卷期号:22 (7): 1265-1276 被引量:11
标识
DOI:10.1080/14697688.2022.2037698
摘要

This paper introduces a new dynamic portfolio performance risk measure called Expected Regret of Drawdown (ERoD) which is an average of the drawdowns exceeding a specified threshold (e.g. 20%). ERoD is similar to Conditional Drawdown-at-Risk (CDaR) which is the average of some percentage of the largest drawdowns. CDaR and ERoD portfolio optimization problems are equivalent and result in the same set of optimal portfolios. Necessary optimality conditions for ERoD portfolio optimization lead to Capital Asset Pricing Model (CAPM) equations. ERoD Beta, similar to the Standard Beta, relates returns of the securities and those of a market. ERoD Beta is equal to [average losses of a security over time intervals when market is in drawdown exceeding the threshold] divided by [average losses of the market in drawdowns exceeding the threshold]. Therefore, a negative ERoD Beta identifies a security which has positive returns when the market has drawdowns exceeding the threshold. ERoD Beta accounts only for time intervals when the market is in drawdown and conceptually differs from Standard Beta which does not distinguish up and down movements of the market. Moreover, ERoD Beta provides quite different results compared to the Downside Beta based on Lower Semi-deviation. ERoD Beta is conceptually close to CDaR Beta which is based on a percentage of worst case market drawdowns. However, ERoD Beta has some advantage compared to CDaR Beta because the magnitude of the drawdowns is known (e.g. exceeding a 20% threshold), while CDaR Beta is based on a percentage of the largest drawdowns with unknown magnitude. We have built a website reporting CDaR and ERoD Betas for stocks and the SP 500 index as an optimal market portfolio. The case study showed that CDaR and ERoD Betas exhibit persistence over time and can be used in risk management and portfolio construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
17秒前
跳跃应助科研通管家采纳,获得10
17秒前
跳跃应助科研通管家采纳,获得10
17秒前
CodeCraft应助材料生采纳,获得10
31秒前
vetzlk完成签到 ,获得积分10
34秒前
47秒前
平淡冷发布了新的文献求助10
50秒前
NattyPoe应助歪梨小羊采纳,获得10
55秒前
1分钟前
材料生发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
英姑应助小小K采纳,获得10
1分钟前
香蕉觅云应助阿星采纳,获得10
1分钟前
1分钟前
小小K发布了新的文献求助10
1分钟前
明理觅风完成签到 ,获得积分10
1分钟前
2分钟前
古手咪啪发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
跳跃应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
完美世界应助简宁采纳,获得10
2分钟前
李健应助liyang采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
charih完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
简宁发布了新的文献求助10
2分钟前
SciGPT应助zmjmj采纳,获得10
2分钟前
3分钟前
没见云发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755305
求助须知:如何正确求助?哪些是违规求助? 5493226
关于积分的说明 15381070
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632125
邀请新用户注册赠送积分活动 1579966
关于科研通互助平台的介绍 1535776