High-Order Correlation Preserved Incomplete Multi-View Subspace Clustering

聚类分析 子空间拓扑 超图 计算机科学 数学 拉普拉斯矩阵 模式识别(心理学) 算法 人工智能 理论计算机科学 图形 组合数学
作者
Zhenglai Li,Chang Tang,Xiao Zheng,Xinwang Liu,Wei Zhang,En Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2067-2080 被引量:110
标识
DOI:10.1109/tip.2022.3147046
摘要

Incomplete multi-view clustering aims to exploit the information of multiple incomplete views to partition data into their clusters. Existing methods only utilize the pair-wise sample correlation and pair-wise view correlation to improve the clustering performance but neglect the high-order correlation of samples and that of views. To address this issue, we propose a high-order correlation preserved incomplete multi-view subspace clustering (HCP-IMSC) method which effectively recovers the missing views of samples and the subspace structure of incomplete multi-view data. Specifically, multiple affinity matrices constructed from the incomplete multi-view data are treated as a third-order low rank tensor with a tensor factorization regularization which preserves the high-order view correlation and sample correlation. Then, a unified affinity matrix can be obtained by fusing the view-specific affinity matrices in a self-weighted manner. A hypergraph is further constructed from the unified affinity matrix to preserve the high-order geometrical structure of the data with incomplete views. Then, the samples with missing views are restricted to be reconstructed by their neighbor samples under the hypergraph-induced hyper-Laplacian regularization. Furthermore, the learning of view-specific affinity matrices as well as the unified one, tensor factorization, and hyper-Laplacian regularization are integrated into a unified optimization framework. An iterative algorithm is designed to solve the resultant model. Experimental results on various benchmark datasets indicate the superiority of the proposed method. The code is implemented by using MATLAB R2018a and MindSpore library: https://github.com/ChangTang/HCP-IMSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助洺全采纳,获得10
1秒前
高兴的幻柏完成签到 ,获得积分10
2秒前
冷酷夏旋发布了新的文献求助30
2秒前
多肽专家完成签到,获得积分10
4秒前
_ban发布了新的文献求助10
4秒前
穿堂风完成签到,获得积分10
4秒前
爱吃鸭锁骨完成签到,获得积分10
6秒前
kevin完成签到 ,获得积分10
6秒前
yumb完成签到,获得积分20
8秒前
科研通AI5应助ZHY采纳,获得80
8秒前
豆豆完成签到,获得积分10
8秒前
9秒前
烟花应助xubee采纳,获得10
11秒前
悦耳的万言完成签到,获得积分10
13秒前
飞飞完成签到 ,获得积分10
14秒前
14秒前
15秒前
18秒前
敬老院N号给帅的罪鸽认了的求助进行了留言
18秒前
wyq发布了新的文献求助30
19秒前
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
热心市民应助科研通管家采纳,获得20
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
24秒前
24秒前
乂氼完成签到,获得积分10
25秒前
123发布了新的文献求助10
25秒前
顾矜应助悦耳的万言采纳,获得100
26秒前
科研通AI5应助Kikisman采纳,获得10
26秒前
26秒前
LIVE发布了新的文献求助200
27秒前
27秒前
Monn完成签到,获得积分10
29秒前
having完成签到,获得积分10
30秒前
木同人完成签到,获得积分10
31秒前
打打应助和谐的孱采纳,获得10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225