Development and validation of MRI-based radiomics signatures models for prediction of disease-free survival and overall survival in patients with esophageal squamous cell carcinoma

医学 介入放射学 食管鳞状细胞癌 无线电技术 神经组阅片室 磁共振成像 肿瘤科 内科学 超声波 放射科 神经学 精神科
作者
Funing Chu,Yun Liu,Qiuping Liu,Weijia Li,Zhengyan Jia,Chenglong Wang,Zhaoqi Wang,Shuang Lü,Ping Li,Yuanli Zhang,Yu-Bo Liao,Miao Xu,Xiaoqiang Yao,Zhen Wang,Cuicui Liu,Hongkai Zhang,Shaoyu Wang,Yan Xu,Ihab R. Kamel,Haibo Sun,Guang Yang,Yudong Zhang,Jinrong Qu
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (9): 5930-5942 被引量:13
标识
DOI:10.1007/s00330-022-08776-6
摘要

To develop and validate an optimal model based on the 1-mm-isotropic-3D contrast-enhanced StarVIBE MRI sequence combined with clinical risk factors for predicting survival in patients with esophageal squamous cell carcinoma (ESCC).Patients with ESCC at our institution from 2015 to 2017 participated in this retrospective study based on prospectively acquired data, and were randomly assigned to training and validation groups at a ratio of 7:3. Random survival forest (RSF) and variable hunting methods were used to screen for radiomics features and LASSO-Cox regression analysis was used to build three models, including clinical only, radiomics only and combined clinical and radiomics models, which were evaluated by concordance index (CI) and calibration curve. Nomograms and decision curve analysis (DCA) were used to display intuitive prediction information.Seven radiomics features were selected from 434 patients, combined with clinical features that were statistically significant to construct the predictive models of disease-free survival (DFS) and overall survival (OS). The combined model showed the highest performance in both training and validation groups for predicting DFS ([CI], 0.714, 0.729) and OS ([CI], 0.730, 0.712). DCA showed that the net benefit of the combined model and of the clinical model is significantly greater than that of the radiomics model alone at different threshold probabilities.We demonstrated that a combined predictive model based on MR Rad-S and clinical risk factors had better predictive efficacy than the radiomics models alone for patients with ESCC.• Magnetic resonance-based radiomics features combined with clinical risk factors can predict survival in patients with ESCC. • The radiomics nomogram can be used clinically to predict patient recurrence, DFS, and OS. • Magnetic resonance imaging is highly reproducible in visualizing lesions and contouring the whole tumor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗犷的谷秋完成签到 ,获得积分10
2秒前
阔达棉花糖完成签到 ,获得积分10
2秒前
yuhuai发布了新的文献求助10
7秒前
慕青应助文耳东采纳,获得10
8秒前
8秒前
8秒前
张张完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
莫飞完成签到,获得积分10
11秒前
11秒前
12秒前
毅诚菌发布了新的文献求助10
13秒前
毅诚菌发布了新的文献求助10
13秒前
毅诚菌发布了新的文献求助10
13秒前
毅诚菌发布了新的文献求助10
13秒前
毅诚菌发布了新的文献求助10
13秒前
毅诚菌发布了新的文献求助10
13秒前
毅诚菌发布了新的文献求助10
15秒前
毅诚菌发布了新的文献求助10
15秒前
毅诚菌发布了新的文献求助10
15秒前
毅诚菌发布了新的文献求助10
15秒前
毅诚菌发布了新的文献求助10
15秒前
无与伦比完成签到 ,获得积分10
16秒前
yqm完成签到,获得积分20
17秒前
量子星尘发布了新的文献求助10
17秒前
bxl完成签到,获得积分10
19秒前
刘源文完成签到,获得积分10
20秒前
20秒前
21秒前
24秒前
李健应助youyuanDeng采纳,获得10
25秒前
mokLee63发布了新的文献求助10
26秒前
27秒前
Bagpipe发布了新的文献求助10
31秒前
monned完成签到 ,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864635
求助须知:如何正确求助?哪些是违规求助? 3407023
关于积分的说明 10652456
捐赠科研通 3131028
什么是DOI,文献DOI怎么找? 1726757
邀请新用户注册赠送积分活动 831983
科研通“疑难数据库(出版商)”最低求助积分说明 780078